

OBJECT ORIENTED PROGRAMMING WITH JAVA

M.Sc (COMPUTER SCIENCE)
SEMESTER-I, PAPER-II

 Lesson Writers:

Dr. K. Lavanya Dr.U. Surya Kameswari
Asst. Professor, Asst. Professor
Dept. Of CS&E Dept. Of CS&E
Acharya Nagarjuna University Acharya Nagarjuna University
Nagarjunanagar – 522 510. Nagarjunanagar – 522 510.

 Dr. Vasantha Rudramalla Mrs. Appikatla Pushpa Latha
 Faculty Faculty, Dept. of CS&E
 Dept. CS &E Acharya Nagarjuna University

Acharya Nagarjuna University, Nagarjunanagar – 522 510
Nagarjunanagar – 522 510

Editor

Dr.U. Surya Kameswari
Asst. Professor
Dept. of CS&E

Acharya Nagarjuna University
Nagarjunanagar – 522 510.

Director, I/c.

Prof. V. Venkateswarlu
 M.A., M.P.S., M.S.W ., M.Phil., Ph.D.

Professor
Centre for Distance Education
Acharya Nagarjuna University

Nagarjuna Nagar 522 510

Ph: 0863-2346222, 2346208
 0863- 2346259 (Study Material)

Website www.anucde.info
E-mail: anucdedirector@gmail.com

M.Sc Computer Science

First Edition : 2025

No. of Copies :

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of M.Sc (Computer
Science), Centre for Distance Education, Acharya Nagarjuna University and this book

is meant for limited circulation only.

Published by:

Prof. V. Venkateswarlu,
Director I/c
Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been

forging ahead in the path of progress and dynamism, offering a variety of
courses and research contributions. I am extremely happy that by gaining 'A+'
grade from the NAAC in the year 2024, Acharya Nagarjuna University is
offering educational opportunities at the UG, PG levels apart from research
degrees to students from over 221 affiliated colleges spread over the two districts
of Guntur and Prakasam.

The University has also started the Centre for Distance Education in
2003-04 with the aim of taking higher education to the door step of all the
sectors of the society. The centre will be a great help to those who cannot join in
colleges, those who cannot afford the exorbitant fees as regular students, and
even to housewives desirous of pursuing higher studies. Acharya Nagarjuna
University has started offering B.Sc., B.A., B.B.A., and B.Com courses at the
Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG
level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the
distance mode, these self-instruction materials have been prepared by eminent
and experienced teachers. The lessons have been drafted with great care and
expertise in the stipulated time by these teachers. Constructive ideas and
scholarly suggestions are welcome from students and teachers involved
respectively. Such ideas will be incorporated for the greater efficacy of this
distance mode of education. For clarification of doubts and feedback, weekly
classes and contact classes will be arranged at the UG and PG levels
respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country's progress. It is my fond desire that
in the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people.
My congratulations to all the Directors, Academic Coordinators, Editors and
Lesson-writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao

M.Tech., Ph.D.,
Vice-Chancellor I/c

 Acharya Nagarjuna University

M.Sc. Computer Science
Semester-I, Paper-II

102CP24 -OBJECT ORIENTED PROGRAMMING WITH JAVA

Syllabus

UNIT-1

Java Basics - History of Java, Java buzzwords, comments, data types, variables, constants,
scop and life time of variables, operators, operator hierarchy, expressions, type conversion
and casting, enumerated types, control flow-block scope, conditional statements, loops,
break and continue statements, simple java program, arrays, input and output, formatting
output, Review of OOP concepts, encapsulation, inheritance, polymorphism, classes,
objects, constructors methods, parameter passing, static fields and methods, access control,
this reference, overloading methods and constructors, recursion, garbage collection,
building strings, exploring string class Enumerations, autoboxing and unboxing, Generics.

Inheritance -Inheritance concept, benefits of inheritance, Super classes and Sub classes,
Member access rules, Inheritance hierarchies, super uses, preventing inheritance final
classes and methods, casting, polymorphism- dynamic binding, method overriding,
abstract classes and methods, the Object class and its methods.

UNIT II

Interfaces Interfaces vs. Abstract classes, defining an interface, implementing interfaces,
accessing implementations through interface references, extending interface

Packages-Defining, Creating and Accessing a Package, Understanding CLASSPATH,
importing packages.

UNIT III

Files-streams- byte streams, character streams, text Input/output, binary input/output,
random access file operations, File management using File class, Using java.io.

Exception handling - Dealing with errors, benefits of exception handling, the
classification of exceptions- exception hierarchy, checked exceptions and unchecked
exceptions, usage of try, catch, throw, throws and finally, rethrowing exceptions, exception
specification, built in exceptions, creating own exception sub classes, Guide lines for
proper use of exceptions.

UNIT IV

Multithreading - Differences between multiple processes and multiple threads, thread
states, creating threads, interrupting threads, thread priorities, synchronizing threads,
interthread communication, thread groups, daemon threads.

Event Handling Events, Event sources, Event classes, Event Listeners, Relationship
between Event sources and Listeners, Delegation event model, Semantic and Low-level
events, Examples handling a button click, handling mouse and keyboard events, Adapter
classes.

UNIT V

Applets - Inheritance hierarchy for applets, differences between applets and applications,
life cycle of an applet Four methods of an applet, Developing applets and testing, passing

(102CP24)

M.SC DEGREE EXAMINATION, Model QP
Computer Science – First Semester

OBJECT ORIENTED PROGRAMMING WITH JAVA

Time: 3 hrs Max Marks: 70

 Answer ONE Question from each unit 5 x 14 = 70 M

UNIT – I

1. a) Explain about final classes, final methods and final variables?

b) Explain about the abstract class with example program

(OR)

2. What are the basic principles of Object Oriented Programming? Explain with
examples, how they are implemented in C++

UNIT – II

3. Is there any alternative solution for Inheritance. If so explain the advantages and
disadvantages of it.

(OR)

 4. a)What is a package? How do we design a package?

b) How do we add a class or interface to a package?

UNIT – III

5. In JAVA, is exception handling implicit or explicit or both. Explain with the help of
example java programs.

(OR)

6. a. Explain in detail about random access file operations.

b. Write about Stream Classes.

UNIT-IV

 7. a) With the help of an example, explain multithreading by extending thread class.

 b) Implementing Runnable interface and extending thread, which method you refer for
multithreading and why?

(OR)

8. Explain Mouse and KeyBoard Events

UNIT – V

9. Differentiate following with suitable examples

 a) Frame, JFrame b) Applet, JApplet c) Menu, JMenu

(OR)

 10. Explain the following

a) Creating an applet b) Passing parameters to applets c) Adding graphics

CONTENTS

 TITLE PAGE NO

1. Java Basic Concepts 1.1- 1.26

2. Oops Concepts 2.1- 2.25

3. Conditional Statements 3.1- 3.25

4. Loop Statements 4.1- 4.19

5. Advance Java Concepts 5.1- 5.28

6. Inheritance 6.1- 6.23

7. Polymorphism 7.1- 7.20

8. Interfaces 8.1- 8.13

9. Packages 9.1- 9.12

10. Files 10.-10.20

11. Exceptional Handling 11.1-11.21

12. Built-in & Own Exceptions 12.1-12.17

13. Thread 13.1- 13.31

14. Event Handling 14.1- 14.20

15. Applets 15.1- 15.18

16. GUI Programming with Java 16.1-16.18

17. Java’s Graphis Capabilities 17.1-17.13

LESSON- 01

JAVA BASIC CONCEPTS

AIMS AND OBJECTIVES

By the end of this chapter, you should be able to:

 Know history of Java

 Explore Core Java Concepts.

 Understand the Real-time problem-solving with Java.

 Know Practical Application of Java.

 Learn some additional java concepts like casting and enumerated data types

 Understand the control flow of program

STRUCTURE

1.1 Introduction

1.2 JAVA History

1.3 JAVA Buzzwords

1.4 Comments

1.5 Data Types

1.6 Variables

1.7 Constants

1.8 Operators

1.9 Operator Precedence

1.10 Expressions

1.11 Summary

1.12 Technical Terms

1.13 Self-Assessment Questions

1.14 Suggested Readings

Centre for Distance Education 1.2 Acharya Nagarjuna University

1.1 INTRODUCTION

Java is a widely used programming language known for its simplicity and versatility.
Developed by Sun Microsystems in the mid-1990s, Java was designed to be platform-
independent, allowing developers to write code that can run on any device equipped with
the Java Virtual Machine (JVM). This introductory overview highlights Java's fundamental
features, including a rich set of data types—both primitive and reference types—that help
manage different kinds of information.

In Java, comments are crucial for documenting code, allowing developers to

annotate their logic without impacting execution. Variables and constants are essential
elements, where variables can change during execution, while constants remain fixed.
Operators in Java facilitate various operations, such as arithmetic and logical calculations.
Enumerated types provide a way to define a set of named values, enhancing code
readability. The control flow structures, including conditionals (if-else statements) and
loops (for and while), guide the execution path of the program. Importantly, block scope
determines the visibility and lifetime of variables within defined blocks, ensuring organized
and manageable code. Overall, Java's design promotes robust software development
through its clear syntax and comprehensive features.

This chapter introduces Java, covers the fundamental features of java, history of

Java, comment in java, data types, variables, constants, operators, type casting, enumerated
types, and control flow-block scope

1.2 JAVA HISTORY

Java was developed by James Gosling and his team at Sun Microsystems in the mid-1990s,
with its initial release occurring in 1995. The language was designed to address the
shortcomings of C and C++, aiming for ease of use, security, and platform independence.
Originally named "Oak," it was intended for programming set-top boxes for cable
television. However, as the internet began to grow, Java's focus shifted towards web
applications.

The release of Java 1.0 in 1995 marked a significant milestone, introducing features like the
Java Virtual Machine (JVM) and the foundation for its "write once, run anywhere"
capability. Subsequent versions brought enhancements, expanding the language's
functionality and performance. Java 2 introduced the Collections framework and Swing for
graphical user interface (GUI) development, while Java 5 (also known as J2SE 5.0) added
generics and metadata.

Over the years, Java continued to evolve, with major versions such as Java 8 introducing
lambda expressions and stream API, significantly enhancing its capabilities for modern
programming paradigms. The transition to a time-based release model in 2017 allowed Java
to adopt new features more rapidly. Today, Java remains a foundational language in

OOP with Java 1.3 Java Basic Concepts

enterprise applications, Android development, and web services, celebrated for its stability,
scalability, and extensive community support.

1.3 JAVA BUZZWORDS

Java is a powerful and versatile programming language known for its rich set of features
that make it one of the most popular choices for developers worldwide. Below are some of
the key features that define Java and are shown in Figure 1.1:

Figure 1.1 Java Buzzwords

 Platform Independence:

Java's most celebrated feature is its ability to run on any device with a Java Virtual
Machine (JVM). This "write once, run anywhere" (WORA) capability ensures that Java
applications are portable across different environments, from desktops to servers to
mobile devices.

 Object-Oriented:

Java is an object-oriented programming language, which means it organizes software
design around objects, rather than functions and logic. This approach encourages modular
and reusable code, making Java programs easier to maintain and scale.

 Simple and Easy to Learn:

Java is designed to be easy to use, with a syntax that is clean and easy to understand,
especially for those familiar with other programming languages like C or C++. Java
removes complex features like pointers and operator overloading, simplifying the
learning curve.

Centre for Distance Education 1.4 Acharya Nagarjuna University

Robust and Secure:
Java is designed with a strong focus on error handling and runtime checking, making it
less prone to crashes and runtime errors. It also includes features like garbage collection
to manage memory automatically. Java's security model, including the JVM’s ability to
sandbox applications, makes it a secure choice for developing applications, especially for
web-based environments.

 Multithreaded:

Java natively supports multithreading, allowing the concurrent execution of two or more
threads. This feature is crucial for developing applications that need to perform multiple
tasks simultaneously, such as games, server applications, and real-time systems.

 High Performance:

While Java is an interpreted language, the introduction of Just-In-Time (JIT) compilers
and performance enhancements in the JVM allows Java applications to run with high
efficiency, making it competitive with natively compiled languages.

 Distributed:

Java is designed for distributed computing, enabling developers to create applications that
can run across networks and interact with other services. It provides robust support for
networking through the java.net package and APIs for Remote Method Invocation (RMI)
and Enterprise JavaBeans (EJB).

 Dynamic:

Java is a dynamic language, capable of adapting to an evolving environment. It supports
dynamic loading of classes and functions, allowing for the development of flexible and
extensible programs. Java programs can also adapt to new environments and systems
without requiring changes in the source code.

 Memory Management:

Java provides automated memory management through its garbage collection mechanism,
which automatically removes objects that are no longer in use. This reduces the burden on
developers to manage memory manually, minimizing memory leaks and other memory-
related issues.

Rich API and Libraries:
Java comes with a vast set of APIs and libraries that provide ready-to-use functions for
various tasks, from data structures and algorithms to networking and database
management. This extensive library support accelerates development and reduces the
need for third-party libraries.

OOP with Java 1.5 Java Basic Concepts

These features collectively make Java a preferred language for a wide range of
applications, from web and mobile applications to enterprise-level systems and scientific
computing and are shown in Table 1.1.

Table 1.1 Features of Java

Feature Description

 Simple Java is easy to learn, and its syntax is quite simple, clean
and easy to understand

 Object Oriented Java can be easily extended as it is based on Object
Model

 Robust automatic Garbage Collector and Exception Handling.

 Platform Independent Bytecode is platform independent and can be run on any
machine, allow security

 Multi-Threading

 utilizes same memory and other resources to execute
multiple threads at the same time

 High Performance the use of just-in-time compiler

 Distributed designed to run on computer networks

1.4 COMMENTS IN JAVA

In Java, comments are used to annotate and explain code, making it easier for developers
to read and understand the program. Comments are not executed by the Java compiler,
which means they do not affect the program's functionality. There are three types of
comments in Java:

 Single-line comments: These comments start with // and extend to the end of the line.

 Multi-line comments: These comments start with /* and end with */. They can span
multiple lines.

 Documentation comments: These comments start with /** and are used to generate
documentation through tools like Javadoc.

Examples:

 Single-line comment:

// This is a single-line comment

int number = 10; // This variable stores the number 10

 Multi-line comment:

/*

Centre for Distance Education 1.6 Acharya Nagarjuna University

 * This is a multi-line comment

 * that can span multiple lines.

 */

int total = 5; /* This variable holds the total value */

 Documentation comment:

/**

 * This method calculates the sum of two integers.

 * @param a An integer value

 * @param b Another integer value

 * @return The sum of a and b

 */

public int sum(int a, int b) {

 return a + b;

}

Using comments effectively helps in clarifying the purpose of the code and maintaining it
in the long run.

1.5 DATA TYPES

In Java, data types specify the size and type of values that can be stored in variables. Java
is a statically typed language, meaning that each variable must be declared with a data
type before it can be used. Java's data types are categorized into two main groups:
primitive data types and non-primitive data types and are shown in Figure 1.2.

Figure 1.2 Classification of Java Data Types

OOP with Java 1.7 Java Basic Concepts

 Primitive Data Types:

 Primitive data types are the most basic data types available in Java. They are
predefined by the language and named by a keyword. Java has eight primitive data
types which are shown in Table 1.2:

 byte:

 Size: 8 bits

 Range: -128 to 127

 Description: Useful for saving memory in large arrays, where the memory
savings are most needed. It can also be used in place of int where the range
of values is known to be small.

 Example: byte b = 100;

 short:

 Size: 16 bits

 Range: -32,768 to 32,767

 Description: A data type that is larger than byte but smaller than int. It's
also used to save memory in large arrays.

 Example: short s = 10000;

 int:

 Size: 32 bits

 Range: -2^31 to 2^31-1 (-2,147,483,648 to 2,147,483,647)

 Description: The default choice for integral values unless there is a reason
to use byte or short. Most used for integer arithmetic.

 Example: int i = 100000;

 long:

 Size: 64 bits

 Range: -2^63 to 2^63-1 (-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807)

 Description: Used when a wider range than int is needed.

 Example: long l = 100000L;

 float:

 Size: 32 bits

 Range: Varies, approximately ±3.40282347E+38F (6-7 significant
decimal digits)

Centre for Distance Education 1.8 Acharya Nagarjuna University

 Description: Used for single-precision floating-point numbers. It’s
recommended to use float if you need to save memory in large arrays of
floating-point numbers.

 Example: float f = 234.5f;

 double:

 Size: 64 bits

 Range: Varies, approximately ±1.79769313486231570E+308 (15
significant decimal digits)

 Description: Used for double-precision floating-point numbers and is the
default choice for decimal values.

 Example: double d = 123.456;

 char:

 Size: 16 bits (2 bytes)

 Range: 0 to 65,535 (unsigned)

 Description: Used to store a single character. Java uses Unicode, so it can
store any character from any language.

 Example: char c = 'A';

 boolean:

 Size: Not precisely defined (depends on JVM implementation, but
typically 1 bit)

 Range: true or false

 Description: Used for flags that track true/false conditions.

 Example: boolean isJavaFun = true;

Table 1.2 Primitive Data Types in Java

Data Type Default Value Default size Range
byte 0 1 byte or 8 bits -128 to 127
short 0 2 bytes or 16 bits -32,768 to 32,767
int 0 4 bytes or 32 bits 2,147,483,648 to 2,147,483,647

long 0 8 bytes or 64 bits
9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
float 0.0f 4 bytes or 32 bits 1.4e-045 to 3.4e+038

double 0.0d 8 bytes or 64 bits 4.9e-324 to 1.8e+308

char ‘\u0000’ 2 bytes or 16 bits 0 to 65536

boolean FALSE 1 byte or 2 bytes 0 or 1

OOP with Java 1.9 Java Basic Concepts

 Non-Primitive Data Types

Non-Primitive data types are not predefined like primitive data types. Instead, they are
created by the programmer and can refer to any object in Java and are shown in Figure
1.3. Reference variables store the memory address of the object they refer to, rather than
the data itself.

Figure 1.3 Non-Primitive Data Types in Java

 Strings:

 Description: Strings are objects in Java, represented by the String class.

They are used to store sequences of characters.

 Example: String message = "Hello, World!";

 Arrays:

 Description: Arrays are objects that store multiple variables of the same

type. The size of an array is fixed upon creation.

 Example: int[] numbers = {1, 2, 3, 4, 5};

 Classes and Objects:

 Description: Classes define new data types by grouping data and methods

that operate on the data. When you create an instance of a class, it is called

an object.

 Example:

Example:

class Car {

Centre for Distance Education 1.10 Acharya Nagarjuna University

 String model;

 int year;

}

Car myCar = new Car();

myCar.model = "Tesla";

myCar.year = 2021;

 Interfaces:
 Description: Interfaces define a contract or a set of methods that a class

must implement. They are used to achieve abstraction and multiple
inheritance in Java.

 Example:
interface Vehicle {
 void start();
}

class Bike implements Vehicle {
 public void start() {
 System.out.println("Bike started");
 }
}

Understanding and properly using data types is fundamental in Java programming. The
correct data type ensures that you use memory efficiently and avoid errors. Primitive
types are straightforward and efficient for basic data handling, while non-primitive types
allow for more complex data structures and operations.

1.6 VARIABLES

In Java, a variable is a container that holds data. It is a memory location with a specific
type, identified by a name. Variables allow you to store and manipulate values in your
program.

 Declaration of Variables

Declaration is the process of defining a variable's name and type without assigning it a
value.

The syntax for declaring a variable in Java is:

 dataType variableName;

Example:

int age; // Declares an integer variable named 'age'.

OOP with Java 1.11 Java Basic Concepts

String name; // Declares a String variable named 'name'.

 Initialization of Variables

Initialization refers to assigning a value to a declared variable. A variable must be
initialized before it is used, particularly for local variables.

Example:

age = 25; // Initializes 'age' with the value 25.

name = "Alice"; // Initializes 'name' with the value "Alice".

You can also declare and initialize a variable in one line:

int age = 25; // Declaration and initialization.

String name = "Alice"; // Declaration and initialization.

 Types of Variables

Java variables can be categorized into three primary types, which include local variables,
instance variable and static variables and shown in Figure 1.4.

Fig 1.4. Classification of Variables

Local Variables

 Definition: Declared inside a method, constructor, or block. The scope is limited
to that method or block.

Centre for Distance Education 1.12 Acharya Nagarjuna University

 Initialization: Must be initialized before use.

Example:

public void display() {

 int localVar = 10; // Local variable

 System.out.println("Local Variable: " + localVar);

}

 Instance Variables

 Definition: Declared within a class but outside any method. Each instance of the
class (object) has its own copy of the variable.

 Initialization: Initialized when the object is created or can be set using
constructors.

Example:

class Person {

 String name; // Instance variable

 Person(String name) { // Constructor to initialize

 this.name = name;

 }

 void display() {

 System.out.println("Name: " + name);

 }

}

public class Main {

 public static void main(String[] args) {

 Person person1 = new Person("Alice");

 person1.display(); // Output: Name: Alice

OOP with Java 1.13 Java Basic Concepts

 }

}

Static Variables

 Definition: Declared with the static keyword. Static variables are shared among all
instances of a class. Only one copy exists for all instances, and it is stored in the
static memory.

 Initialization: Can be initialized in the same way as instance variables.

Example:

class Counter {

 static int count = 0; // Static variable

 void increment() {

 count++; // Increment the static variable

 }

 void displayCount() {

 System.out.println("Count: " + count);

 }

}

public class Main {

 public static void main(String[] args) {

 Counter counter1 = new Counter();

 Counter counter2 = new Counter();

 counter1.increment();
 counter1.displayCount(); // Output: Count: 1

 counter2.increment();
 counter2.displayCount(); // Output: Count: 2
 }

}

Centre for Distance Education 1.14 Acharya Nagarjuna University

1.7 CONSTANTS

In Java, constants are values that do not change during the execution of the program.
Constants are typically used when you have values that should remain fixed throughout
the program, such as the value of pi, maximum or minimum limits, or configuration
values. Constants are typically used to represent fixed values such as mathematical
constants or configuration values.

 Declaration of Constants

A constant must be declared with the final keyword in Java. This ensures that the value
assigned to the constant cannot be changed after initialization. Additionally, constants are
typically declared as static when you want them to be shared among all instances of the
class.

 Initialization of Constants

Constants are initialized at the time of declaration or in the constructor if they are instance
constants. However, once a constant is initialized, its value cannot be changed.

 Types of Constants

There are two main types of constants in Java:

Instance Constants: These are constants that belong to an instance of the class. Each
instance of the class can have different values, but once set, they cannot be changed.They
are declared final but without the static keyword.

Example:

public class Circle {

 // Instance constant

 public final double radius;

 // Constructor to initialize the constant

 public Circle(double radius) {

 this.radius = radius;

 }

 public double getArea() {

 return MathConstants.PI * radius * radius;

OOP with Java 1.15 Java Basic Concepts

 }

 public static void main(String[] args) {

 // Creating an instance of Circle

 Circle circle = new Circle(5);

 System.out.println("Area of circle: " + circle.getArea());

 }

}

 public final double radius; is an instance constant.

 It is initialized through the constructor and cannot be changed after that.

 The constant PI from the MathConstants class is used to calculate the area of the
circle.

Class Constants (Static Constants): These are constants that belong to the class itself
rather than any instance. They are declared both final and static. They are often used for
values that are common to all objects of that class.

Example:

public class MathConstants {

 // Declare a static constant

 public static final double PI = 3.14159;

 public static void main(String[] args) {

 // Accessing the static constant without creating an object

 System.out.println("Value of PI: " + PI);

 }

}

 public static final double PI = 3.14159; is a class constant.

 It is declared static, so it can be accessed using the class name (MathConstants.PI)
without creating an instance of the class.

 It is declared final, meaning its value cannot be modified after initialization.

Centre for Distance Education 1.16 Acharya Nagarjuna University

 Constants in Enums

Enums in Java can also have constant values associated with them. Enums are a special
kind of class used to define a set of constant values.

public class DayExample {

 public enum Day {

 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY

 }

 public static void main(String[] args) {

 Day today = Day.MONDAY;

 switch(today) {

 case MONDAY:

 System.out.println("Start of the week!");

 break;

 case FRIDAY:

 System.out.println("End of the week!");

 break;

 default:

 System.out.println("Mid-week.");

 }

 }

}

 Day is an enum with constants representing days of the week.

 Each value (SUNDAY, MONDAY, etc.) is a constant, and they cannot be modified.

OOP with Java 1.17 Java Basic Concepts

1.3 Types of constants in Java

Constant
Type

Declaration Initialization Example Usage

Static
Constants

public static final
<type> <name> =
<value>;

Initialized at
declaration or in a
static block

public static final double
PI = 3.14159;

Instance
Constants

public final <type>
<name>;

Initialized via
constructor

public final double
radius;

Enum
Constants

enum <name>

{

<constant1>,
<constant2>, ...

}

Declared within the
enum type itself

enum Day

 {

MONDAY, TUESDAY,
WEDNESDAY, ...

}

 Best Practices for Constants

 Naming Conventions: Constants are usually written in uppercase letters with
words separated by underscores (_), following the naming convention of
UPPER_SNAKE_CASE.

 Accessibility: Constants should generally be made public static final to allow for
easy access across the program.

 Value Types: Constants can be of any primitive type (int, double, boolean, etc.)
or reference type (like String).

7. Other types of Constants and Their Use Cases

 Mathematical Constants: Constants like Math.PI, Math.E, or any other fixed
mathematical value.

 Configuration Constants: Constants used for configuration, such as
MAX_USER_LIMIT = 1000; or DEFAULT_PORT = 8080;.

 Application Constants: Constants used to define fixed application-level values,
such as error codes, file paths, or predefined messages.

Centre for Distance Education 1.18 Acharya Nagarjuna University

constants are a useful way to store values that should not change during the execution of a
program. Using the final keyword ensures that the value remains constant, and static can
be used when the constant is associated with the class itself. Constants help maintain code
readability and prevent errors caused by modifying values that should remain fixed.

1.7 OPERATORS

Operators in Java are special symbols or keywords used to perform operations on
variables and values. Java provides a rich set of operators to manipulate data and
variables, ranging from simple arithmetic to complex logical operations. These operators
are grouped into several categories based on their functionality.

1. Arithmetic Operators:

These operators perform basic arithmetic operations such as addition, subtraction,
multiplication, and division.

 Operators and Examples:

o + (Addition): Adds two operands.
Example: int sum = 5 + 3; // sum = 8

o - (Subtraction): Subtracts the right operand from the left operand.
Example: int difference = 5 - 3; // difference = 2

o * (Multiplication): Multiplies two operands.
Example: int product = 5 * 3; // product = 15

o / (Division): Divides the left operand by the right operand.
Example: int quotient = 6 / 3; // quotient = 2

o % (Modulus): Returns the remainder of a division.
Example: int remainder = 7 % 3; // remainder = 1

2. Assignment Operators:

These operators are used to assign values to variables.

 Operators and Examples:

o = (Assignment): Assigns the value on the right to the variable on the left.
Example: int a = 5;

o += (Add and Assign): Adds the right operand to the left operand and
assigns the result to the left operand.
Example: a += 3; // a = a + 3, so a becomes 8

OOP with Java 1.19 Java Basic Concepts

o -= (Subtract and Assign): Subtracts the right operand from the left
operand and assigns the result to the left operand.
Example: a -= 2; // a = a - 2, so a becomes 6

o *= (Multiply and Assign): Multiplies the left operand by the right
operand and assigns the result to the left operand.
Example: a *= 2; // a = a * 2, so a becomes 12

o /= (Divide and Assign): Divides the left operand by the right operand and
assigns the result to the left operand.
Example: a /= 3; // a = a / 3, so a becomes 4

o %= (Modulus and Assign): Takes the modulus of the left operand by the
right operand and assigns the result to the left operand.
Example: a %= 3; // a = a % 3, so a becomes 1

3. Relational Operators:

These operators compare two values and return a boolean result (true or false).

 Operators and Examples:

o == (Equal to): Checks if two values are equal.
Example: boolean isEqual = (5 == 3); // isEqual = false

o != (Not Equal to): Checks if two values are not equal.
Example: boolean isNotEqual = (5 != 3); // isNotEqual = true

o > (Greater than): Checks if the left operand is greater than the right
operand.
Example: boolean isGreater = (5 > 3); // isGreater = true

o < (Less than): Checks if the left operand is less than the right operand.
Example: boolean isLess = (5 < 3); // isLess = false

o >= (Greater than or Equal to): Checks if the left operand is greater than
or equal to the right operand.
Example: boolean isGreaterOrEqual = (5 >= 3); // isGreaterOrEqual = true

o <= (Less than or Equal to): Checks if the left operand is less than or
equal to the right operand.
Example: boolean isLessOrEqual = (5 <= 3); // isLessOrEqual = false

4. Logical Operators:

These operators are used to perform logical operations on boolean values.

Centre for Distance Education 1.20 Acharya Nagarjuna University

 Operators and Examples:

o && (Logical AND): Returns true if both operands are true.
Example: boolean result = (5 > 3 && 8 > 6); // result = true

o || (Logical OR): Returns true if at least one of the operands is true.
Example: boolean result = (5 > 3 || 8 < 6); // result = true

o ! (Logical NOT): Reverses the logical state of its operand.
Example: boolean result = !(5 > 3); // result = false

5. Unary Operators:

These operators operate on a single operand.

 Operators and Examples:

o + (Unary Plus): Indicates a positive value (typically optional as numbers
are positive by default).
Example: int positive = +5;

o - (Unary Minus): Negates the value of the operand.
Example: int negative = -5;

o ++ (Increment): Increases the value of the operand by 1.
Example: int a = 5; a++; // a becomes 6

o -- (Decrement): Decreases the value of the operand by 1.
Example: int a = 5; a--; // a becomes 4

o ! (Logical NOT): Inverts the value of a boolean operand.
Example: boolean isTrue = true; isTrue = !isTrue; // isTrue becomes false

6. Bitwise Operators:

These operators perform bit-level operations on integer types.

 Operators and Examples:

o & (Bitwise AND): Performs a bitwise AND operation on two
operands.
Example: int result = 5 & 3; // result = 1 (0101 & 0011 = 0001)

o | (Bitwise OR): Performs a bitwise OR operation on two operands.
Example: int result = 5 | 3; // result = 7 (0101 | 0011 = 0111)

OOP with Java 1.21 Java Basic Concepts

o ^ (Bitwise XOR): Performs a bitwise XOR operation on two
operands.
Example: int result = 5 ^ 3; // result = 6 (0101 ^ 0011 = 0110)

o ~ (Bitwise Complement): Inverts all the bits of the operand.
Example: int result = ~5; // result = -6 (bitwise complement of 0101)

o << (Left Shift): Shifts the bits of the left operand to the left by the
number of positions specified by the right operand.
Example: int result = 5 << 2; // result = 20 (0101 << 2 = 10100)

o >> (Right Shift): Shifts the bits of the left operand to the right by the
number of positions specified by the right operand.
Example: int result = 5 >> 2; // result = 1 (0101 >> 2 = 0001)

o >>> (Unsigned Right Shift): Shifts the bits of the left operand to the
right by the number of positions specified by the right operand, filling
the leftmost bits with zeros.
Example: int result = 5 >>> 2; // result = 1

7. Ternary Operator:

The ternary operator is a shorthand for an if-else statement. It has three operands and is
used to evaluate a boolean expression.

 Operator and Example:

o ? : (Ternary): Evaluates a condition and returns one of two values
depending on whether the condition is true or false.
Example: int result = (5 > 3) ? 10 : 20; // result = 10

8. Instanceof Operator:

The instanceof operator checks whether an object is an instance of a specific class or
subclass.

 Operator and Example:

o instanceof: Returns true if the object is an instance of the specified class
or subclass, otherwise false.
Example: boolean isString = "Hello" instanceof String; // isString = true

1.9 Operator Precedence:

In Java, operator precedence defines the order in which operators are evaluated in an

expression. Operators with higher precedence are evaluated before those with lower

Centre for Distance Education 1.22 Acharya Nagarjuna University

precedence. If two operators have the same precedence, their associativity (whether they

are evaluated left-to-right or right-to-left) determines the order.

 Highest Precedence:

 Array Subscript [] and Member Reference .

o These operators have the highest precedence. For example, in

array[i].method(), the subscript i is evaluated first, followed by the method

call method().

 Postfix ++, --:

o Postfix increment and decrement operators (expr++, expr--) have higher

precedence than other operators, and they first evaluate the operand before

performing the increment or decrement.

o Example: int x = 5; int y = x++; → x is evaluated first (as 5), and then

incremented to 6.

 Unary Operators ++, --, +, -, ~, !:

o Unary operators such as ++ (increment), -- (decrement), + (positive), -

(negative), ~ (bitwise NOT), and ! (logical NOT) come next in precedence.

o Example: int x = -5; → The unary minus operator - is applied first.

 Multiplicative Operators *, /, %:

o Multiplication (*), division (/), and modulus (%) operators have higher

precedence than the additive operators (+, -).

o Example: int result = 3 + 2 * 5; → Multiplication (2 * 5) is evaluated first,

then addition (3 + 10).

 Additive Operators +, -:

o Addition and subtraction operators have lower precedence than

multiplication, division, and modulus operators.

o Example: int result = 10 - 5 + 3; → Subtraction (10 - 5 = 5), then addition

(5 + 3 = 8).

 Shift Operators <<, >>, >>>:

o The shift operators are used to shift bits to the left (<<), to the right (>>),
and unsigned right (>>>). They come after the additive operators in terms
of precedence.

o Example: int result = 5 << 1; → Left shifts the bits of 5 by 1 position.

OOP with Java 1.23 Java Basic Concepts

 Relational Operators <, >, <=, >=, instanceof:

o Relational operators are used for comparison. instanceof checks whether
an object is an instance of a specific class or interface.

o Example: if (x > y) {...} → Compares if x is greater than y.

 Equality Operators ==, !=:

o The equality operators are used to compare if two values are equal (==) or
not equal (!=).

o Example: if (x == y) {...} → Compares whether x is equal to y.

 Bitwise Operators &, ^, |:

o These operators perform bitwise AND (&), XOR (^), and OR (|)
operations on integer values.

o Example: int result = a & b; → Performs a bitwise AND between a and b.

 Logical Operators &&, ||:

o Logical AND (&&) and logical OR (||) are used for boolean expressions.
&& has higher precedence than ||.

o Example: if (a && b) {...} → Evaluates the logical AND of a and b.

 Ternary Conditional Operator ?::

o The ternary conditional operator is used for conditional expressions:
condition ? expr1 : expr2. It has higher precedence than logical AND/OR
operators.

o Example: int result = (x > y) ? x : y; → If x > y is true, result gets x,
otherwise y.

 Assignment Operators =, +=, -=, etc.:

o Assignment operators, including =, +=, -=, etc., are evaluated last, and
they have right-to-left associativity.

o Example: a = b = 5; → First b = 5 is evaluated, then a = b.

 Comma ,:

o The comma operator is used to separate multiple expressions in a single
statement and has the lowest precedence.

Centre for Distance Education 1.24 Acharya Nagarjuna University

o Example: int result = (x = 3, y = 4, x + y); → The expressions are
evaluated from left to right, but the final value is x + y.

 Associativity of Operators

 Left-to-right associativity: Most operators (including arithmetic, relational, and
bitwise operators) have left-to-right associativity. This means that in expressions
involving operators of the same precedence, evaluation occurs from left to right.

o Example: 3 + 2 - 5 → First 3 + 2 = 5, then 5 - 5 = 0.

 Right-to-left associativity: Operators like assignment (=, +=, etc.) and the ternary
conditional (?:) have right-to-left associativity. This means that these operators
evaluate from right to left.

o Example: a = b = 5 → First b = 5, then a = b.

1.10 Expressions

In Java, an expression is a construct made up of variables, operators, and method calls
that evaluates to a single value. Expressions are essential in Java because they form the
logic within your code—allowing you to perform calculations, manipulate data, and make
decisions.
Here are some common types of expressions in Java:
1. Arithmetic Expressions
Perform basic mathematical operations.
int sum = 5 + 3; // Addition int product = 4 * 2; // Multiplication double quotient = 10.0 /
4; // Division (floating-point)
2. Relational Expressions
Compare values and result in a boolean (true or false).
boolean isEqual = (5 == 5); // true boolean isGreater = (10 > 7); // true boolean
isLessOrEqual = (5 <= 8); // true
3. Logical Expressions
Combine boolean expressions with logical operators && (AND), || (OR), and ! (NOT).
boolean result = (5 > 3) && (3 < 10); // true, both conditions are true boolean
anotherResult = (5 > 7) || (3 < 10); // true, only one condition needs to be true boolean
notTrue = !(5 == 5); // false, because 5 == 5 is true
4. Assignment Expressions
Assign values to variables, often with shorthand operators.
int a = 5; // Assignment a += 3; // Equivalent to: a = a + 3; int b = 4 * (a + 2); //
Assignment with an expression
5. Conditional (Ternary) Expressions
Short form of an if-else statement.
int x = 5, y = 10; int max = (x > y) ? x : y; // max will be 10, since y > x

OOP with Java 1.25 Java Basic Concepts

6. Method Call Expressions
Calling a method can be part of an expression if the method returns a value.
int length = "Hello".length(); // length is 5 boolean startsWithH =
"Hello".startsWith("H"); // true
7. Type Casting Expressions
Convert one data type to another.
double pi = 3.14159;
int intPi = (int) pi; // Casting double to int, intPi is 3

above mentioned casting is narrow casting (Explicit Casting), must be done manually by
placing the type in parentheses () in front of the value.

Another method is Widening Casting (Implicit Casting), automatically performed by the
Java compiler. Converts a smaller data type to a larger data type without any loss of
information.No explicit syntax is required.

Example:

public class WideningCastingExample {
 public static void main(String[] args) {
 int num = 100;
 double convertedValue = num; // Automatic conversion from int to double
 System.out.println("Converted value: " + convertedValue); // Output: 100.0
 }
}

Rules for Widening Casting: From smaller to larger types:

 byte → short → int → long → float → double

 Example of a Complex Expression
Combining multiple expressions:
int a = 5;
int b = 10;
boolean isAGreater = (a + b > 10) && (a * b < 100); // true

In this example, (a + b > 10) and (a * b < 100) are relational expressions that
return true or false. The && operator is a logical expression combining both, resulting in
a final boolean value.

1.11 SUMMARY

Java is a widely used, object-oriented programming language designed for portability,
security, and high performance. Java programs run on any platform without modification,
making it platform independent. Java features a rich set of data types, including primitive
types like int, float, char, and boolean, as well as reference types like arrays and objects.
The language offers a variety of operators, such as arithmetic, relational, and logical
operators, to perform operations on variables and data. Constants in Java allow users to

Centre for Distance Education 1.26 Acharya Nagarjuna University

restrict a value throughout entire program. Additionally, the operator precedence, and
how it work on various expressions also provided.

1.12 TECHNICAL TERMS

 Data Type

 Operator

 static

 Boolean

 Type casting

 arithmetic

 operator precedence

1.13 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the structure and significance of data types in Java programming.
2. Describe the concept of operator precedence with example java program.
3. Analyze the key buzzwords of Java that make it a robust and versatile

programming language
4. Discuss the different types of operators in Java and their role in program

development.
5. Compare and contrast various types of constants in Java.

 Short questions:

1. List and briefly describe expressions in Java.
2. What is the purpose of enum datatype in Java?
3. What is the role of data types in Java?

1.14 SUGGESTED READINGS
1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021),

McGraw-Hill Education
2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly

Media
3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley

Professional
4. "Object-Oriented Analysis and Design with Applications" by Grady Booch, 3rd

Edition (2007), Addison-Wesley Professional
5. "Thinking in Java" by Bruce Eckel,4th Edition (2006), Prentice Hall

AUTHOR: Dr. KAMPA LAVANYA

LESSON- 02

OOPS CONCEPTS

AIMS AND OBJECTIVES

By the end of this chapter, you should be able to:

1. Understand the basic concepts of Object-Oriented Programming (OOP).

2. Recognize the applications of OOP

3. Explain the fundamental features of OOP, including encapsulation, inheritance,

polymorphism, and abstraction.

4. Apply the principles of OOP to design and implement modular and maintainable

software solutions.

STRUCTURE

 2.1 Introduction

 2.2 Object-Oriented Programming (OOP)

 2.3 Applications of OOP

2.4 Classes

2.5 Objects

2.6 Access Specifiers

2.7 Constructors

2.8 Parameter Passing

2.9 Summary

2.10 Technical Terms

2.11 Self-Assessment Question

2.12 Suggested Readings

2.1 INTRODUCTION

In the world of software development, different programming paradigms have been
used to solve problems. The two most prominent paradigms are Procedure-Oriented
Programming (POP) and Object-Oriented Programming (OOP). While POP was widely
used in the early days of programming, it presented challenges in managing complex
software projects.

Centre for Distance Education 2.2 Acharya Nagarjuna University

This chapter introduces OOP, a paradigm that overcomes the limitations of POP by

organizing software design around data, or objects, rather than functions and logic. You

will learn how OOP offers a more intuitive approach to problem-solving by closely

mirroring real-world entities and their interactions. Explain the fundamental features of

OOP. Also explained each concept detailly with examples. In addition, constructors and

parameter passing techniques also discussed.

2.2 OBJECT-ORIENTED PROGRAMMING (OOP)

OOP is a programming paradigm that organizes software design around data, or objects,

rather than functions and logic. An object in OOP is a self-contained unit that contains

both data (attributes) and methods (functions) that manipulate the data. OOP focuses on

creating reusable code and models real-world entities and their interactions more

naturally.

The key concepts of Object-Oriented Programming (OOP) are essential principles that

guide the design and implementation of software in an object-oriented way The Key

Concepts of OOP described in Figure 2.1.

Fig 2.1. Key Concepts of OOP

Object Oriented Programming with JAVA 2.3 OOPS Concepts

 Object

An object is an instance of a class. It represents a specific implementation of the class
with actual values for its attributes. For example, a Car object might have make set to
"Toyota", model set to "Corolla", and year set to 2021. Each object can interact with
other objects or function independently.

Objects in OOP are fundamental to building complex systems, as they allow for
encapsulation of data and behavior, promoting modularity and reuse. The concept is
shown in Figure 2.2.

Fig 2.2. Object concept in OOP

 Class

A class is a blueprint for creating objects. It defines a data structure that holds
attributes (data) and methods (functions) that manipulate this data. Classes allow
programmers to create objects with specific properties and behaviors, providing a
template that ensures consistency across similar objects.

For example, consider a class Car. The Car class might have attributes like make,
model, and year, and methods like startEngine and stopEngine.

Every car object created from the Car class will have these attributes and methods, but
with different values. The concept is shown in Figure 2.3.

Fig 2.3. Class concept in OOP

Centre for Distance Education 2.4 Acharya Nagarjuna University

 Encapsulation:

Encapsulation is the bundling of data and methods that operate on that data within a

single unit, usually a class. It restricts access to certain components, which is

essential for protecting the integrity of the data. By providing public methods to

access private data, encapsulation enables controlled interaction with the data.

 Inheritance:

Inheritance is a mechanism that allows a new class, known as a subclass, to inherit

attributes and methods from an existing class, known as a superclass. This promotes

code reuse and establishes a natural hierarchy among classes. For example, a Circle

and Box might inherit from the Shape class, sharing common attributes and methods

while introducing new ones Circle and Box. The concept is shown in Figure 2.4.

Fig 2.4. Inheritance concept in OOP

 Polymorphism:

Polymorphism allows objects of different classes to be treated as objects of a

common superclass. It enables a single interface to represent different underlying

data types. For instance, both the Shape and Box classes might implement a Draw

method, but each class could have a different implementation of this method. The

concept is shown in Figure 2.5.

Object Oriented Programming with JAVA 2.5 OOPS Concepts

Fig 2.5. Polymorphism Concept in OOP
 Abstraction:

Abstraction involves hiding the complex implementation details of a class and

exposing only the necessary interfaces to the user. It simplifies interaction with

complex systems by focusing on the essential features and ignoring irrelevant

details.

Here are the key features of Object-Oriented Programming (OOP) listed in a concise,

point-wise format and shown in Table 2.1:

Table 2.1 Features of OOP

Feature Description

Encapsulation Bundles data (attributes) and methods (functions) into a single unit
(class) and restricts access to some components to protect data
integrity.

Abstraction Hides complex implementation details and exposes only the
necessary parts, allowing focus on what an object does rather than
how it does it.

Inheritance Allows a new class to inherit properties and behaviors from an
existing class, promoting code reusability and reducing redundancy.

Polymorphism Enables objects of different classes to respond to the same function
call in different ways, enhancing flexibility and scalability.

Centre for Distance Education 2.6 Acharya Nagarjuna University

Modularity Encourages the division of a program into smaller, self-contained
modules (classes), improving code organization, readability, and
maintainability.

Reusability Facilitates the reuse of existing code in new applications, saving
time and reducing errors.

Dynamic Binding Determines the method to be invoked at runtime, providing
flexibility and supporting polymorphism.

Message Passing Objects communicate by sending messages (function calls) to each
other, enabling complex behaviors through object interactions.

2.3 APPLICATION OF OOP

Here are the key applications of Object-Oriented Programming (OOP) listed in a concise,

point-wise format:

 Software Development:

o OOP is widely used in developing large-scale software systems, including

enterprise applications, due to its modularity, reusability, and scalability.

 Game Development:

o OOP is ideal for creating complex game environments where characters,

objects, and interactions are modeled as objects with attributes and behaviors.

 Graphical User Interface (GUI) Design:

o OOP facilitates the development of GUI applications where elements like

buttons, windows, and dialogs are treated as objects that can be manipulated

independently.

 Simulation and Modeling:

o OOP is used in simulations (e.g., flight simulators, scientific models) where

real-world entities and their interactions are represented as objects.

 Web Development:

o OOP principles are used in web development frameworks and languages (like

JavaScript, Python, and PHP) to create dynamic, object-oriented web

applications.

 Database Management Systems (DBMS):

Object Oriented Programming with JAVA 2.7 OOPS Concepts

o OOP is used in developing DBMS software where data can be modeled as

objects, allowing for complex data relationships and operations.

 Real-time Systems:

o OOP is applied in developing real-time systems, such as operating systems

and embedded systems, where modularity and efficient code management are

critical.

 Distributed Systems:

o OOP is used in building distributed systems where objects can communicate

across networks, facilitating the development of scalable, distributed

applications.

 Artificial Intelligence (AI) and Machine Learning (ML):

o OOP is used to develop AI and ML models, where different components

(e.g., data processing, model training, prediction) are encapsulated as objects.

 Mobile Application Development:

o OOP is integral to developing mobile apps, where different components of

the app are encapsulated into objects, improving code manageability and

reusability.

These applications demonstrate the versatility and effectiveness of OOP in various

domains, making it a foundational paradigm in modern software development.

2.4 CLASS

A class acts as a template for the creation of objects that have common behaviors and

properties. A Car class, which represents individual automobiles, is an example of

something that embodies attributes and meaning inside a particular context. Classes are

used to preserve common attributes and behaviors, which makes the process of creating

and managing objects in programming more practical and efficient.

 Class Declaration

This is the header of the class that specifies its name, access level, and any other class

modifiers. It begins with the class keyword.

Syntax:

public class ClassName {

 // class body

}

Centre for Distance Education 2.8 Acharya Nagarjuna University

Example:

public class Car {

 // class body

}

 Instance Variables

These are variables declared inside the class but outside any method, constructor, or

block. Each object of the class can have different values for these variables.

Syntax:

private int numberOfDoors;

public String color;

Example:

public class Car {

 private String model;

 public int year;

}

 Methods

Methods define the behaviors of the objects created from the class. They are blocks of

code that perform a specific task and can be called upon to execute. Methods can have

return types and parameters.

Syntax:

public returnType methodName(parameters) {

 // method body

}

Example:

public class Car {

 private String model;

 public int year;

 public void getInfo(String model, int year) {

 model = model;

 year = year;

 }

 // Method

Object Oriented Programming with JAVA 2.9 OOPS Concepts

 public void displayInfo() {

 System.out.println("Model: " + model + ", Year: " + year);

 }

}

 Access Modifiers

Access modifiers control the visibility of the class, fields, constructors, and methods.

Common access modifiers include public, private, protected, and package-private (no

explicit modifier).

- public: The class, method, or field is accessible from any other class.

- private: The method or field is accessible only within the class it is declared.

- protected: The method or field is accessible within its own package and by subclasses.

Example:

public class Car {

 private String model; // private access

 public int year; // public access

}

OBJECT

A real-world entity is modeled by an object in the world. When modeling entities, it is

necessary to determine the state of the object as well as the set of actions that may be

carried out within that object. Object-oriented programming relies heavily on this method

of thinking as its foundation.

 In Java, the root class of all objects that have been instantiated is called an Object.

 Instantiated objects are names that refer to an instance of the class.

Centre for Distance Education 2.10 Acharya Nagarjuna University

Figure 2.6 class and objects

 Declaring and Instantiating Objects in Java
creating a new instance of P and initializing its name to Nivas, age to 22 , gender to male ,
and course to MCA.
Example:
 Class Person
 {
 private string name;
 private int age;
 private string gender;
 private string course;
 Public Get_Person(String name,int age,Stirng gender,String
course,double sscore)
 {
 this.name =name;
 this.age = age;
 this.gender = gender;
 this.course = course;
 this.sscore = sscore;
 }
 public void displayPerson() {

 System.out.println("Name: " + name);
 System.out.println("Age: " + age);
 System.out.println("Gender: " + gender);
 System.out.println("Course: " + course);

 }
 Public void sportsScore()
 {

 System.out.println("Sport Score: " + sscore);
 }
 }
 class Main{
 public static void main(String [] args){
 Person P= new Person()
 P.Get_Person(“Nivas”, “22 “, “male” , “MCA”);

Object Oriented Programming with JAVA 2.11 OOPS Concepts

 P. displayPerson();
 P.sportsScore();
 }
 }
Instance variables can also be initialized using methods. This approach allows more
complex logic to be applied when initializing values.
Initialization Using Instance Initialization Blocks
Instance initialization blocks are blocks of code inside a class that are executed whenever

an object of the class is created. They are executed before the constructor.

Example:

public class Car {
 private String model;
 private int year;

 // Instance initialization block
 {
 model = "Ford";
 year = 2019;
 }
 public void displayInfo() {
 System.out.println("Model: " + model); // Output: Model: Ford
 System.out.println("Year: " + year); // Output: Year: 2019
 }
 public static void main(String[] args) {
 Car myCar = new Car();
 myCar.displayInfo();
 }
}
Explicit Initialization

Instance variables can be initialized explicitly when they are declared. This method

assigns a specific value to the variable when the class instance is created.

Example:

public class Car {

 // Explicit initialization

 private String model = "Toyota";

 private int year = 2020;

 public void displayInfo() {

 System.out.println("Model: " + model); // Output: Model: Toyota

Centre for Distance Education 2.12 Acharya Nagarjuna University

 System.out.println("Year: " + year); // Output: Year: 2020

 }

 public static void main(String[] args) {

 Car myCar = new Car();

 myCar.displayInfo();

 }

}

2.5 ACCESS CONTROL

Access Control in Java imposes limitations on the extent of the class, for instance

variables, methods, and constructor’s scope.

In Java, there are four access modifiers: Default, Private, Protected, and Public. Access

modifiers in Java regulate visibility. Keeping personal income information within the

family limits access to private information. Public grants unrestricted access, similar to

complete awareness of your name by everyone. Protected is analogous to the public, but

with some restricted scope. The default value functions as a fundamental reference point,

located within its package. These modifiers control the visibility of entities like as

variables, constructors, and methods.

Figure 2.7 types of access modifiers

Object Oriented Programming with JAVA 2.13 OOPS Concepts

2.6.1 Default Access Modifier

Where no access modifier is expressly provided to class members and methods in Java,

they default to package-private access. Consequently, they are exclusively accessible

within the same package, hence commonly known as private package.

Real-world analogy: Envision configuring your Facebook privacy option to "visible only

to your friends". Package-private access limits access to members and methods only

within the same package, similar to regulating the visibility of your status to just known

friends.

Access within the same package: Members and methods with default access can be

accessed freely within the same package. Access from another package: Attempting to

access default members from another package results in an error, as default access doesn't

permit this.

Example 1

In the example below is a package First containing two classes. We are trying to access

the first-class default method in second class.

First Package

package First;

public class University {

 int id = 1;

 void print() {

 System.out.println("This is the University class");

 }

}

class Hello {

 public static void main(String[] args) {

 University ob = new University();

 //This line will call the print() method, which is having the default modifier

 ob.print();

 }

}

Centre for Distance Education 2.14 Acharya Nagarjuna University

Output:

C:\Users\Surya\.jdks\openjdk-16.0.2\bin\java.exe

This is the University class

The program will run successfully because default members and the methods can be

accessed in the same package.

2.6.2 Private Access Modifier

The private modifier in programming limits access to certain data members and methods

within a class. It's like setting your Facebook status to "only me" - only you can see it,

and similarly, only the class itself can access private members. Even other classes in the

same package can't access them.

Example

In the below class, we have two private instance members and a constructor, as well as a

method of private type.

class University {

 //Private members

 private int roll;

 private String name;

 //Parameterised Constructor

 University(int a) {

 System.out.print(a);

 }

 //Default constructor private

 private University() {}

 //Private method

 private void print() {

 System.out.println("This is the University class");

 }

}

class Main {

 public static void main(String args[]) {

 //Creating the instance of the University class

 //This will successful run

Object Oriented Programming with JAVA 2.15 OOPS Concepts

 University ob1 = new University(1);

 //Creating another instance of University class

 //This will cause an error

 University ob = new University();

 //These two lines also cause errors.

 ob.name = "Surya";

 ob.print();

 }

}

Output:

C:\Users\Surya\Desktop\CP\src\University.java

java: construcor University in class University cannot be applied to given types;

required: no arguments

found: no arguments

reason: University() has private access in University

 C:\Users\Surya\Desktop\CP\src\University.java

java: name has private access in University

C:\Users\Surya\Desktop\CP\src\University.java

java: print has private access in University

 2.6.3 . Protected Access Modifier

In Java, protected access is a valuable feature that enables access both within the same

package and by subclasses, regardless of their membership in a separate package.

Explicitly accessing protected members from another package requires extending the

class that has those members. This entails instantiating a subclass in the alternative

language package. Mere creation of an object belonging to the class does not provide

access to its protected members; it is necessary to inherit them through a derived class.

There are two packages, First and Second, The First package contains one public class

and a protected prefixed method, and we are trying to access this method in another

package in two ways.

 Creating an instance of the University class (declared in First package)

 Inheriting the University class in the MyProgs class of the Second package.

Centre for Distance Education 2.16 Acharya Nagarjuna University

First package:

package First;

public class University {

 int id = 1;

 protected void print() {

 System.out.println("This is the University class");

 }

}

Second package:

package Second;

import First.University;

class MyProgs extends University {

 public static void main(String[] args) {

 University ob = new University();

 //This line will cause an error

 ob.print();

 MyProgs ob1 = new MyProgs();

 //This line will not cause an error

 ob1.print();

 }

}

The line ob.print() will cause an error because we cannot access the protected method

outside its package, but we can access it by inheriting it in some other class of different

packages, that's why ob1.print() will not cause any error.

2.6.4 Public Access Modifier

The public access modifier in Java means there are no restrictions on accessing the

methods, classes, or instance members of a particular class. It allows access from any

package and any class. A real-life example is setting a Facebook status to "public,"

allowing anyone on Facebook, whether a friend or not, to see it. This flexibility makes the

public modifier useful for wide accessibility.

Object Oriented Programming with JAVA 2.17 OOPS Concepts

Example

Consider two packages named First and Second with two public classes.

The University class of the First package contains one instance member and one method,

i.e. print(). Both are of public type. Let's try to access them in another class of different

packages, i.e. in the Second package.

First package:

package First;

public class University {

 //Instance member

 public int id = 1;

 //Class method

 public void print() {

 System.out.println("This is the University class");

 }

}

Second package:

package Second;

import First.University; public class MyProgs {

 public static void main(String[] args) {

 //Creating the instance of the University class

 University ob = new University();

 //Accessing the instance member of University class

 System.out.println(ob.id); //print 1

 //This is the University class will print

 ob.print();

 } }

Output:

1

Centre for Distance Education 2.18 Acharya Nagarjuna University

This is the University class

We got the correct output, because we can access the public modifier's methods or

instance variables in any class of the same or different package.

Figure 2.8 summary of access modifiers

2.6 CONSTRUCTORS

A constructor in Java is a special type of method that is automatically invoked when an
object of a class is created. The primary purpose of a constructor is to initialize the newly
created object. It sets initial values for the object’s instance variables and performs any
other setup or configuration that the object needs.

2.6.1 Characteristics of Constructors

1. Same Name as the Class: A constructor must have the same name as the class in

which it resides. This is how the Java compiler identifies it as a constructor rather than a

regular method.

2. No Return Type: Constructors do not have a return type, not even 'void'. The lack of a

return type distinguishes constructors from normal methods.

3. Called Automatically: Constructors are automatically called when an object of the

class is created using the 'new' keyword.

4. Cannot be Called Explicitly: Unlike other methods, constructors cannot be called

explicitly using the dot ('.') operator. They are invoked only during object creation.

5. Can Be Overloaded: A class can have multiple constructors with different parameter

lists (constructor overloading). This allows objects to be created in different ways with

different initializations.

Object Oriented Programming with JAVA 2.19 OOPS Concepts

6. No Inheritance: Constructors are not inherited by subclasses. However, a subclass can

call a superclass constructor using the 'super' keyword.

2.6.2 Types of Constructors

1. Default Constructor (No-Argument Constructor)

2. Parameterized Constructor

Figure 2.9 types of constructors

2.7.2.1 Default Constructor (No-Argument Constructor)

A default constructor is a constructor that takes no arguments. If a class does not
explicitly define any constructor, the Java compiler automatically provides a default
constructor. This default constructor initializes the object’s instance variables to their
default values.
Example:

public class Car {

 String model;

 int year;

 // Default constructor

 public Car() {

 model = "Unknown";

 year = 0;

 }

 public void displayInfo() {

 System.out.println("Model: " + model);

 System.out.println("Year: " + year);

Centre for Distance Education 2.20 Acharya Nagarjuna University

 }

 public static void main(String[] args) {

 Car car = new Car(); // Calls the default constructor

 car.displayInfo(); // Output: Model: Unknown, Year: 0

 }

}

2.7.2.2 Parameterized Constructor

A parameterized constructor is a constructor that takes one or more parameters.
This type of constructor allows you to initialize objects with specific values when they are
created.
public class Car

 String model;

 int year;

 // Parameterized constructor

 public Car(String model, int year) {

 this.model = model;

 this.year = year;

 }

 public void displayInfo() {

 System.out.println("Model: " + model);

 System.out.println("Year: " + year);

 }

 public static void main(String[] args) {

 Car car = new Car("Toyota", 2022); // Calls the parameterized constructor

 car.displayInfo(); // Output: Model: Toyota, Year: 2022

 }

}

2.7.3 Constructor Overloading
Constructor overloading in Java means having more than one constructor in a class with
different parameter lists. This is useful when you want to provide multiple ways to
initialize an object.

Example:
public class Car {

 String model;

Object Oriented Programming with JAVA 2.21 OOPS Concepts

 int year;

 // Default constructor

 public Car() {

 model = "Unknown";

 year = 0;

 }

 // Parameterized constructor

 public Car(String model, int year) {

 this.model = model;

 this.year = year;

 }

 public void displayInfo() {

 System.out.println("Model: " + model);

 System.out.println("Year: " + year);

 }

 public static void main(String[] args) {

 Car car1 = new Car(); // Calls the default constructor

 Car car2 = new Car("Honda", 2021); // Calls the parameterized constructor

 car1.displayInfo(); // Output: Model: Unknown, Year: 0

 car2.displayInfo(); // Output: Model: Honda, Year: 2021

 }

}

2.7.4 Calling a Superclass Constructor

In a subclass, you can call a constructor of its superclass using the 'super' keyword. This
is typically done when you want to extend the initialization process defined in the
superclass.

Example:
public class Vehicle {
ring type;
// Parameterized constructor
public Vehicle(String type) {
 this.type = type;
 }
}

Centre for Distance Education 2.22 Acharya Nagarjuna University

public class Car extends Vehicle {
 String model;

 // Parameterized constructor

 public Car(String type, String model) {

 super(type); // Calls the constructor of Vehicle class

 this.model = model;

 }

public void displayInfo() {

 System.out.println("Type: " + type);

 System.out.println("Model: " + model);

 }

public static void main(String[] args) {

 Car car = new Car("Sedan", "Toyota");

 car.displayInfo(); // Output: Type: Sedan, Model: Toyota

 }

}

2.8 PARAMETER PASSING

 Parameter Passing in java can be done with either

1. Call by Value

 2. Call by Reference

 Call by Reference (Conceptual, Not Used in Java)

 In Call by Reference, a method receives a reference to the actual variable.

 Changes made inside the method reflect in the original variable.

 Java does not use Call by Reference, but it can sometimes appear similar when

dealing with objects.

 Reference Types in Java (Objects)

 When passing objects (like arrays, StringBuilder, custom objects), the reference

(address) is passed by value.

Object Oriented Programming with JAVA 2.23 OOPS Concepts

 This allows methods to modify the state of the object but not the reference itself.
The reference sb is passed by value, so reassigning it in the method does not affect
the original reference.
Example: Modifying Object State
Java
Copy code
class CallByValueExample {
 public static void modifyObject(StringBuilder sb) {
 sb.append(" World!"); // Modifies the object's state
 }
 public static void main(String[] args) {
 StringBuilder sb = new StringBuilder("Hello");
 modifyObject(sb);
 System.out.println(sb); // Output: Hello World!
 }
}

 The reference to sb is passed by value. The method accesses the same object and
modifies its state.

 However, reassigning the reference inside the method does not affect the original
object.

class CallByValueExample {
 public static void reassignReference(StringBuilder sb) {
 sb = new StringBuilder("New Object"); // Changes only the local reference
 }

 public static void main(String[] args) {
 StringBuilder sb = new StringBuilder("Hello");
 reassignReference(sb);
 System.out.println(sb); // Output: Hello
 }

}

Table 2.2 Summary of Parameter Passing

Type Technique Behavior

Primitive
Types

Call by Value Copies the value, changes inside the method do not
affect the original value.

Reference
Types

Call by Value (with
references)

Copies the reference, changes to the object's state
affect the original, but reassigning does not.

2.9 SUMMARY

Object-Oriented Programming (OOP) is a programming paradigm that organizes
software design around objects, which are instances of classes. It emphasizes key

Centre for Distance Education 2.24 Acharya Nagarjuna University

concepts like encapsulation, abstraction, inheritance, and polymorphism. Encapsulation
bundles data and methods together, while abstraction hides complex implementation
details. Inheritance allows new classes to inherit properties from existing ones, promoting
code reuse. Polymorphism enables objects to be treated as instances of their parent class,
allowing for flexible code. OOP is widely used in modern software development due to
its modularity, reusability, and ability to model real-world scenarios effectively.

2.10 TECHNICAL TERMS

 Object

 Class

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

 Method

 Attribute

 Dynamic Binding and etc

2.11 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the principles of Object-Oriented Programming with examples.
2. Discuss the advantages of using OOP over procedural programming.
3. Describe the concept of inheritance in OOP with an example.
4. How does polymorphism enhance the flexibility of a program? Provide an

example.
5. Explain encapsulation and its importance in software development.
6. Describe about Parameter Passing

 Short questions:
1. What is an object in OOP?
2. Define a class in the context of OOP.
3. What is encapsulation?
4. Explain the concept of inheritance.

5. What is polymorphism in OOP?

Object Oriented Programming with JAVA 2.25 OOPS Concepts

2.12 SUGGESTED READINGS

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021),

McGraw-Hill Education

2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly

Media

3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley

Professional

4. "Object-Oriented Analysis and Design with Applications" by Grady Booch, 3rd

Edition (2007), Addison-Wesley Professional

5. "Thinking in Java" by Bruce Eckel,4th Edition (2006), Prentice Hall

AUTHOR: Dr. KAMPA LAVANYA

LESSON- 03

CONDITIONAL STATEMENTS

AIMS AND OBJECTIVES

By the end of this chapter, you should be able to:

 make decisions within a program based on different conditions.

 control the flow of execution by branching the program into different paths.

 program to adapt its behavior based on real-time inputs or data.

 code readability and maintainability by clearly defining different execution paths.

 complex logical operations by combining multiple conditions using logical

operators.

STRUCTURE

3.1 Introduction

3.2 Features Conditional Statements

 3.3 Basic Conditional Statements

3.4 Advanced Conditional Statements

3.5 Control Flow Enhancements

3.6 Common Use Cases

3.7 Best Practices

3.8 Summary

3.9 Technical Terms

3.10 Self-Assessment Questions

3.11 Suggested Readings

3.1. INTRODUCTION

Conditional statements in Java, such as if, else if, else, and switch, are used to
control the flow of a program based on different conditions. These statements allow a
program to execute specific blocks of code only when certain conditions are met, enabling
it to make decisions and respond dynamically to various inputs or states. This is crucial for
implementing logic that depends on runtime conditions, such as user inputs, data values, or

Centre for Distance Education 3.2 Acharya Nagarjuna University

computational results. By using conditional statements, developers can create more flexible
and interactive applications that adapt their behavior based on real-time conditions. This
chapter introduces Java, covers the fundamental features of java, parts of Java, naming
conventions, data types, operators, input and output statements, and command line
arguments.

3.2 FEATURES CONDITIONAL STATEMENTS

Conditional statements are fundamental constructs in programming languages, including
Java, that allow a program to make decisions based on certain conditions. They enable a
program to execute specific blocks of code only when certain criteria are met, thus
providing a way to branch the flow of execution.

In Java, conditional statements include if, else if, else, switch, and ternary operators. These
statements evaluate expressions that return boolean values (true or false) to determine
which code blocks to execute. The basic purpose of conditional statements is to enable
decision-making in code, allowing the program to respond to different inputs or states.

Features:

1. Decision Making: Conditional statements enable a program to make decisions and
choose different execution paths based on various conditions. This decision-making
capability is essential for implementing logic that reacts to user inputs, data values,
or other dynamic factors.

2. Control Flow Management: By controlling the flow of execution, conditional
statements help manage the sequence of operations in a program. This allows
developers to implement complex logic and ensure that the program performs the
correct actions under different scenarios.

3. Dynamic Behavior: Conditional statements allow a program to adapt its behavior in
real-time. For example, they can enable different features based on user roles,
manage different outcomes based on data values, or adjust functionality depending
on system states.

4. Error Handling: They are used to handle errors or exceptional cases gracefully by
defining specific actions when certain conditions are encountered, thus improving
the robustness of the program.

5. Code Readability and Maintenance: Well-structured conditional statements enhance
the readability of code by clearly defining how different conditions affect the
execution flow. This makes it easier to understand, maintain, and debug the code.

6. Performance Optimization: By using conditional statements, developers can
optimize performance by avoiding unnecessary computations or operations. For

OOP with Java 3.3 Conditional Statements

example, a program might skip certain processing steps if specific conditions are
met.

Overall, conditional statements are a crucial part of programming that help create flexible,
interactive, and efficient applications by allowing the code to make decisions and respond
to different situations dynamically.

3.3 BASIC CONDITIONAL STATEMENTS IN JAVA

Java provides several basic conditional statements to control the flow of execution based
on different conditions. These statements include the if, else if, else, and switch
statements. Here’s an overview of each:

 if Statement

The if statement is used to execute a block of code only if a specified condition evaluates
to true.

Syntax:

if (condition) {

 // Code to be executed if the condition is true

}

Flowchart:

Fig 3.1. Flow Chart of if Statement

Example:

int age = 18;

if (age >= 18) {

Centre for Distance Education 3.4 Acharya Nagarjuna University

 System.out.println("You are an adult.");

}

In this example, the message "You are an adult." will be printed only if the value of age is
18 or greater.

 else Statement

The else statement follows an if statement and provides an alternative block of code to
execute when the if condition evaluates to false.

Syntax:

if (condition) {

 // Code to be executed if the condition is true

} else {

 // Code to be executed if the condition is false

}

Flowchart

Fig 3.2. Flow Chart of if-else Statement

Example:

int age = 16;

if (age >= 18) {

OOP with Java 3.5 Conditional Statements

 System.out.println("You are an adult.");

} else {

 System.out.println("You are not an adult.");

}

Here, the message "You are not an adult." will be printed since the age is less than 18.

 else if Statement

The else if statement allows checking multiple conditions sequentially. It is used when
you need to check more than two conditions.

Syntax:

if (condition1) {

 // Code to be executed if condition1 is true

} else if (condition2) {

 // Code to be executed if condition2 is true

} else {

 // Code to be executed if none of the above conditions are true

}

Flowchart:

Fig 3.3. Flow Chart of else-if ladder Statement

Centre for Distance Education 3.6 Acharya Nagarjuna University

Example:

int score = 85;

if (score >= 90) {

 System.out.println("Grade: A");

} else if (score >= 80) {

 System.out.println("Grade: B");

} else if (score >= 70) {

 System.out.println("Grade: C");

} else {

 System.out.println("Grade: F");

}

In this example, the program prints "Grade: B" because the score is between 80 and 89.

 switch Statement

The switch statement allows for selecting one of many code blocks to execute based on
the value of an expression. It is generally used when a single variable needs to be
compared against multiple possible values.

Syntax:

switch (expression) {

 case value1:

 // Code to be executed if expression equals value1

 break;

 case value2:

 // Code to be executed if expression equals value2

 break;

OOP with Java 3.7 Conditional Statements

 // More cases as needed

 default:

 // Code to be executed if no case matches

}

Flowchart:

Fig 3.4 Flow Chart of else-if ladder Statement

Example:

int day = 3;

switch (day) {

 case 1:

 System.out.println("Monday");

 break;

Centre for Distance Education 3.8 Acharya Nagarjuna University

 case 2:

 System.out.println("Tuesday");

 break;

 case 3:

 System.out.println("Wednesday");

 break;

 default:

 System.out.println("Invalid day");

}

Here, "Wednesday" will be printed because the value of day is 3.

These basic conditional statements provide the foundational building blocks for
implementing decision-making logic in Java programs. They enable developers to control
the flow of execution based on varying conditions, making their applications more
interactive and responsive.

3.4 ADVANCED CONDITIONAL STATEMENTS

In addition to basic conditional statements, Java provides more advanced features to
handle complex decision-making scenarios. These include nested if statements,
combining conditions, the ternary operator, and enhanced switch statements. Here's a
detailed look at each:

 Nested if Statements

Nested if statements are used when you need to make a decision within another decision.
This allows for more granular control over execution based on multiple layers of
conditions.

Syntax:

if (condition1) {

 if (condition2) {

 // Code to be executed if both condition1 and condition2 are true

OOP with Java 3.9 Conditional Statements

 } else {

 // Code to be executed if condition1 is true but condition2 is false

 }

} else {

 // Code to be executed if condition1 is false

}

Example:

int age = 20;

boolean hasTicket = true;

if (age >= 18) {

 if (hasTicket) {

 System.out.println("You can enter the movie.");

 } else {

 System.out.println("You need a ticket to enter.");

 }

} else {

 System.out.println("You must be at least 18 years old to enter.");

}

In this example, the program checks both the age and whether the person has a ticket,
providing a message based on these conditions.

 Combining Conditions

Combining conditions allows for more complex decision-making by using logical
operators such as && (logical AND), || (logical OR), and ! (logical NOT).

Syntax:

Centre for Distance Education 3.10 Acharya Nagarjuna University

if (condition1 && condition2) {

 // Code to be executed if both conditions are true

}

if (condition1 || condition2) {

 // Code to be executed if at least one condition is true

}

if (!condition) {

 // Code to be executed if the condition is false

}

Example:

int temperature = 75;

boolean isRaining = false;

if (temperature > 70 && !isRaining) {

 System.out.println("It's a nice day outside.");

}

if (temperature < 32 || isRaining) {

 System.out.println("Prepare for cold or wet weather.");

}

Here, the program checks multiple conditions to provide appropriate messages based on
the temperature and weather conditions.

3.5 CONTROL FLOW ENHANCEMENTS

Java offers several control flow enhancements that improve the way decisions and
branching are handled within a program. These enhancements include the ternary
operator, assertions, and advanced features in the switch statement. Here's a detailed look
at each enhancement:

OOP with Java 3.11 Conditional Statements

 Ternary Operator

The ternary operator (? :) is a shorthand for simple if-else statements, often used for
concise assignment or return statements. It can be especially useful for reducing verbosity
in conditional expressions.

Syntax:

result = (condition) ? valueIfTrue : valueIfFalse;

Example:

int score = 85;

String grade = (score >= 90) ? "A" : (score >= 80) ? "B" : "C";

System.out.println("Grade: " + grade);

Here, the ternary operator is used to assign a grade based on the score. It's more concise
than using nested if-else statements.

 Assertions

Assertions are a debugging tool used to test assumptions made in the code. They allow
developers to specify conditions that should be true during runtime. If an assertion fails, it
throws an AssertionError, which can be useful for catching logical errors during
development.

Syntax:

assert condition : message;

Example:

int age = 25;

assert age >= 18 : "Age must be 18 or older";

To enable assertions, you must run the Java Virtual Machine (JVM) with the -ea flag
(e.g., java -ea MyClass). Assertions are typically used during development and testing
rather than in production code.

 switch Expression (Java 12+)

Introduced in Java 12, the switch expression enhances the traditional switch statement by
allowing it to return values and use a more concise syntax. It also provides improved
readability and reduces boilerplate code.

Centre for Distance Education 3.12 Acharya Nagarjuna University

Syntax:

result = switch (expression) {

 case value1 -> result1;

 case value2 -> result2;

 default -> defaultResult;

};

Example:

int day = 3;

String dayName = switch (day) {

 case 1 -> "Monday";

 case 2 -> "Tuesday";

 case 3 -> "Wednesday";

 case 4 -> "Thursday";

 case 5 -> "Friday";

 case 6 -> "Saturday";

 case 7 -> "Sunday";

 default -> "Invalid day";

};

System.out.println(dayName);

In this example, the switch expression returns the name of the day based on the value of

day, with a default case for invalid days.

These control flow enhancements provide more flexibility, readability, and efficiency in

handling decision-making and branching in Java programs. They help developers write

cleaner and more maintainable code while leveraging the latest language features.

OOP with Java 3.13 Conditional Statements

3.6 COMMON USE CASES FOR CONDITIONAL STATEMENTS

Conditional statements are versatile tools in Java programming, used to handle a wide
range of scenarios. Here are some common use cases:

 Validating User Input

Conditional statements are often used to check and validate user input, ensuring that data
meets certain criteria before processing.

Example:

import java.util.Scanner;

public class UserInputValidation {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter your age: ");

 int age = scanner.nextInt();

 if (age < 0) {

 System.out.println("Age cannot be negative.");

 } else if (age < 18) {

 System.out.println("You are a minor.");

 } else {

 System.out.println("You are an adult.");

 }

 }

}

In this example, the program validates the user's age and provides appropriate messages

based on the input.

 Implementing Game Logic

Conditional statements are used to create interactive and dynamic game behavior, such as
checking win conditions, handling player actions, and managing game states.

Example:

public class Game {

 public static void main(String[] args) {

Centre for Distance Education 3.14 Acharya Nagarjuna University

 int playerScore = 95;

 int targetScore = 100;

 if (playerScore >= targetScore) {

 System.out.println("Congratulations! You win!");

 } else {

 System.out.println("Keep trying! Your score is " + playerScore);

 }

 }

}

This example checks if the player's score meets or exceeds the target score to determine if
they win.

 Handling Different Application States

Conditional statements help manage different states of an application, such as loading,
running, or error states, by executing different code blocks based on the current state.

Example:

public class ApplicationState {

 public static void main(String[] args) {

 String state = "loading";

 switch (state) {

 case "loading":

 System.out.println("Application is loading...");

 break;

 case "running":

 System.out.println("Application is running.");

OOP with Java 3.15 Conditional Statements

 break;

 case "error":

 System.out.println("An error occurred.");

 break;

 default:

 System.out.println("Unknown state.");

 }

 }

}

This example uses a switch statement to handle different application states.

 Error Handling and Exception Management

Conditional statements are used to handle different error conditions or exceptional cases
gracefully, allowing the program to continue running or provide useful feedback.

Example:

public class ErrorHandling {

 public static void main(String[] args) {

 int number = -10;

 if (number < 0) {

 System.out.println("Error: Number cannot be negative.");

 } else {

 System.out.println("Number is valid: " + number);

 }

 }

}

Centre for Distance Education 3.16 Acharya Nagarjuna University

Here, the program checks for negative numbers and provides an error message if the
condition is met.

 Control Flow in Loops

Conditional statements inside loops allow for fine-grained control of the loop's execution,
such as breaking out of a loop, skipping iterations, or handling specific cases.

Example:

for (int i = 0; i < 10; i++) {

 if (i % 2 == 0) {

 System.out.println(i + " is even.");

 } else {

 System.out.println(i + " is odd.");

 }

}

In this example, the if-else statement determines whether each number in the loop is even
or odd.

 Calculating Discounts or Pricing

Conditional statements are used to apply different pricing or discounts based on customer
eligibility, purchase amounts, or other criteria.

Example:

public class Pricing {

 public static void main(String[] args) {

 double purchaseAmount = 150.00;

 double discount;

 if (purchaseAmount >= 100) {

 discount = 0.10; // 10% discount

OOP with Java 3.17 Conditional Statements

 } else {

 discount = 0.05; // 5% discount

 }

 double finalPrice = purchaseAmount * (1 - discount);

 System.out.println("Final price after discount: $" + finalPrice);

 }

}

This example calculates a discount based on the purchase amount and applies it to the
final price.

 User Authentication and Authorization

Conditional statements help manage user access levels, permissions, and authentication
processes in applications.

Example:

public class UserAuthentication {

 public static void main(String[] args) {

 String userRole = "admin";

 if (userRole.equals("admin")) {

 System.out.println("Access granted to admin panel.");

 } else if (userRole.equals("user")) {

 System.out.println("Access granted to user dashboard.");

 } else {

 System.out.println("Access denied.");

 }

 }

}

Centre for Distance Education 3.18 Acharya Nagarjuna University

Here, the program checks the user's role to determine access rights.

These use cases illustrate how conditional statements are crucial for implementing logic,
managing application flow, and handling various scenarios in Java programs.

3.7 BEST PRACTICES

Effective use of conditional statements is essential for writing clean, efficient, and
maintainable code. Here are some best practices to follow:

 Avoid Deep Nesting

Deeply nested conditional statements can make code difficult to read and maintain. To
improve readability, try to minimize nesting levels by:

 Using early returns or breaks to exit from a method or loop as soon as a condition
is met.

 Refactoring complex conditions into separate methods that return boolean values.

Example:

// Avoid deep nesting

if (condition1) {

 if (condition2) {

 if (condition3) {

 // Do something

 }

 }

}

// Refactored code

if (!condition1) return;

if (!condition2) return;

OOP with Java 3.19 Conditional Statements

if (condition3) {

 // Do something

}

 Use Descriptive Conditionals

Ensure that the conditions in your if, else if, and switch statements are clear and
descriptive. Use meaningful variable names and consider using helper methods to
encapsulate complex conditions.

Example:

// Descriptive conditional

if (user.isEligibleForDiscount()) {

 applyDiscount();

}

// Less descriptive

if (user.getAge() > 60 && user.hasLoyaltyCard()) {

 applyDiscount();

}

 Prefer switch for Multiple Conditions

When dealing with a single variable that can have multiple distinct values, using a switch
statement can be clearer and more efficient than multiple if-else statements.

Example:

// Using switch

switch (dayOfWeek) {

 case MONDAY:

 // Handle Monday

 break;

Centre for Distance Education 3.20 Acharya Nagarjuna University

 case TUESDAY:

 // Handle Tuesday

 break;

 default:

 // Handle other cases

}

// Using if-else (less preferred)

if (dayOfWeek == MONDAY) {

 // Handle Monday

} else if (dayOfWeek == TUESDAY) {

 // Handle Tuesday

} else {

 // Handle other cases

}

 Leverage Ternary Operator for Simple Conditions

Use the ternary operator for simple if-else assignments to make the code more concise
and readable. Avoid using it for complex conditions or multiple statements.

Example:

// Using ternary operator

int max = (a > b) ? a : b;

// Avoid complex ternary operations

String result = (a > b) ? (a > c ? "a" : "c") : (b > c ? "b" : "c");

5. Handle All Possible Cases in switch Statements

OOP with Java 3.21 Conditional Statements

Ensure that all possible cases are handled in switch statements, including a default case to
manage unexpected values. This helps prevent bugs and ensures robustness.

Example:

java

Copy code

switch (status) {

 case ACTIVE:

 // Handle active status

 break;

 case INACTIVE:

 // Handle inactive status

 break;

 default:

 // Handle unexpected status

 System.out.println("Unknown status");

}

 Use Pattern Matching and switch Expressions (Java 12+ and Java 17+)

Take advantage of advanced features like switch expressions and pattern matching to
write more concise and expressive code.

Example with switch expression:

String dayName = switch (dayOfWeek) {

 case MONDAY -> "Monday";

 case TUESDAY -> "Tuesday";

 case WEDNESDAY -> "Wednesday";

Centre for Distance Education 3.22 Acharya Nagarjuna University

 default -> "Unknown day";

};

Example with pattern matching:

Object obj = "Hello";

String result = switch (obj) {

 case String s && s.length() > 5 -> "Long string";

 case String s -> "Short string";

 default -> "Not a string";

};

Avoid Overusing Conditional Logic

While conditional logic is powerful, overusing it can lead to complex and hard-to-
maintain code. Consider using design patterns, polymorphism, or strategy patterns to
handle complex logic in a more manageable way.

Example: Instead of using a lot of if-else statements to handle different behaviors,
consider using the Strategy pattern to encapsulate these behaviors.

 Document Complex Conditions

When using complex conditions or nested statements, add comments to explain the logic.
This will help others (and yourself) understand the intent and functionality of the code.

Example:

java

Copy code

// Check if user is eligible for a special discount

if (user.isMember() && user.hasMadePurchaseInLastMonth()) {

 applySpecialDiscount();

}

OOP with Java 3.23 Conditional Statements

By following these best practices, you can write conditional logic that is more readable,
maintainable, and effective, improving the overall quality of your Java code.

3.8 SUMMARY

Conditional statements in Java are essential for directing the flow of a program based on
varying conditions. These include the if, else if, and else statements, which allow
execution of specific code blocks based on whether conditions evaluate to true or false.
The switch statement provides a streamlined approach for handling multiple discrete
values of a variable. Advanced features like the ternary operator, pattern matching, and
enhanced switch expressions further enhance flexibility and readability. By using these
constructs, Java developers can implement dynamic decision-making and control the
program’s execution path effectively.

3.9 TECHNICAL TERMS

 If

 Else

 Switch

 Ternary operator

 Pattern matching

 Condition

 Boolean expression

3.10 SELF ASSESSMENT QUESTIONS

Essay questions:
1. Explain how you would refactor deeply nested if statements to improve

readability and maintainability. Provide a code example.
2. Describe the advantages of using switch expressions introduced in Java 12 over

traditional switch statements. Provide an example.
3. Discuss the differences between using the ternary operator and if-else statements

for conditional logic. When should each be used?
4. How does pattern matching in switch statements enhance code readability and

functionality? Provide an example of pattern matching in use.

 Short questions:

1. What is the purpose of the else statement in Java?

2. How do you use the ternary operator in Java?

3. What is the difference between if-else and switch statements?

Centre for Distance Education 3.24 Acharya Nagarjuna University

4. How does the default case work in a switch statement?

3. 11 SUGGESTED READINGS

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021),

McGraw-Hill Education

2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly

Media

3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley

Professional

AUTHOR: Dr. KAMPA LAVANYA

LESSON- 04

LOOP STATEMENTS

AIMS AND OBJECTIVES

By the end of this chapter, you should be able to:
 execute a block of code multiple times, reducing redundancy and ensuring that

repetitive tasks are automated.
 systematically access each element in a collection or array, enabling operations

such as processing, searching, or modifying data.
 dynamically control the flow of execution based on conditions, allowing for

flexible and adaptive programming.
 handle large datasets or perform calculations repeatedly without manually

duplicating code.
 manage and update counters, such as for indexing elements, tracking iterations, or

controlling loops.
These objectives highlight the importance of loop statements in Java for creating
efficient, readable, and maintainable code.

STRUCTURE

4.1 Introduction
4.2 Basic Loop Statements
4.3 Nested Loops
4.4 Loop Control Statements
4.5 Searching and Sorting with Loops
4.6 Best Practices
4.7 Summary
4.8 Technical Terms
4.9 Self-Assessment Questions
4.10 Suggested Readings

Centre for Distance Education 4.2 Acharya Nagarjuna University

4.1 INTRODUCTION

Loop statements in Java are fundamental constructs that enable developers to execute a
block of code repeatedly based on specified conditions. These control structures are
essential for automating repetitive tasks, processing collections of data, and managing
dynamic execution flows. Java provides several types of loops, including for, while, and
do-while, each designed to handle different looping scenarios. By leveraging loops,
programmers can efficiently iterate over arrays and collections, implement complex
algorithms, and ensure that their code is both concise and maintainable. Understanding how
to effectively use these loops is crucial for optimizing performance and achieving flexible
and scalable software solutions.

4.2 BASIC LOOP STATEMENTS

In Java, basic loop statements are used to execute a block of code repeatedly based on
certain conditions. The primary types of loop statements are for, while, and do-while.
Here’s a brief overview of each:

 for Loop

Definition: The for loop is used when the number of iterations is known beforehand. It
consists of three parts: initialization, condition, and update.

Syntax:

for (initialization; condition; update) {

 // Code to be executed

}

Flowchart:

Fig 4.1. Flowchart of For-loop Statement

OOP with Java 4.3 Control Statements

Example:

// Print numbers from 1 to 5

for (int i = 1; i <= 5; i++) {

 System.out.println(i);

}

Components:

 Initialization: Sets up the loop control variable.

 Condition: The loop continues as long as this condition is true.

 Update: Modifies the loop control variable after each iteration.

 while Loop

Definition: The while loop repeatedly executes a block of code as long as a specified
condition is true. It is used when the number of iterations is not known in advance.

Syntax:

while (condition) {

 // Code to be executed

}

Flowchart:

Fig 4.2 Flowchart of While-loop Statement

Centre for Distance Education 4.4 Acharya Nagarjuna University

Example:

// Print numbers from 1 to 5

int i = 1;

while (i <= 5) {

 System.out.println(i);

 i++;

}

Components:

 Condition: The loop continues as long as this condition remains true.

 Code Block: Executes each time the condition evaluates to true.

 Update: Typically occurs within the code block to eventually terminate the loop.

 do-while Loop

Definition: The do-while loop is similar to the while loop but guarantees that the code block
will execute at least once before the condition is tested.

Syntax:

do {

 // Code to be executed

} while (condition);

Example:

// Print numbers from 1 to 5

int i = 1;

do {

 System.out.println(i);

 i++;

} while (i <= 5);

OOP with Java 4.5 Control Statements

Components:

 Code Block: Executes first before the condition is tested.

 Condition: The loop continues as long as this condition is true.

Summary

 for Loop: Ideal for a known number of iterations.

 while Loop: Best for when the number of iterations is uncertain.

 do-while Loop: Ensures the code block executes at least once.

Understanding and using these basic loop constructs allows developers to handle repetitive
tasks efficiently and control program flow effectively.

4.3 Nested loops

Thes loops are in Java refer to the practice of placing one loop inside another loop. This

structure is used to perform complex iterations, such as iterating over multi-dimensional

arrays or generating patterns. Each loop inside is known as a "nested" loop, and it can be

any type of loop (for, while, or do-while).

Syntax for Nested Loops:

Copy code

for (initialization; condition; update) {

 for (initialization; condition; update) {

 // Inner loop code

 }

 // Outer loop code

}

Examples

1. Printing a Multiplication Table

Example:

// Print a multiplication table from 1 to 5

for (int i = 1; i <= 5; i++) {

 for (int j = 1; j <= 5; j++) {

 System.out.print(i * j + "\t"); // Print the product

 }

 System.out.println(); // Move to the next line

Centre for Distance Education 4.6 Acharya Nagarjuna University

}

In this example:

 The outer loop (i loop) iterates through the rows.

 The inner loop (j loop) iterates through the columns, printing the product of i and

j.

2. Iterating Over a 2D Array

Example:

// Define a 2D array

int[][] matrix = {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9}

};

// Print the 2D array

for (int i = 0; i < matrix.length; i++) {

 for (int j = 0; j < matrix[i].length; j++) {

 System.out.print(matrix[i][j] + " ");

 }

 System.out.println(); // Move to the next line

}

In this example:

 The outer loop iterates over rows of the 2D array.

 The inner loop iterates over columns of each row.

Common Use Cases

1. Generating Patterns: Nested loops are often used to generate patterns or shapes,

such as stars or grids.

// Print a square pattern of stars

for (int i = 0; i < 5; i++) {

 for (int j = 0; j < 5; j++) {

 System.out.print("* ");

 }

 System.out.println();

}

OOP with Java 4.7 Control Statements

2. Matrix Operations: Performing operations on matrices, such as addition,

subtraction, or multiplication, often involves nested loops.

3. Complex Data Structures: Traversing multi-dimensional data structures or grids.

Performance Considerations

 Time Complexity: The time complexity of nested loops is multiplicative. For

example, two nested loops each running n times have a time complexity of

O(n^2).

 Efficiency: Deeply nested loops can lead to performance issues, so it is important

to ensure that they are necessary and optimized.

Nested loops are a powerful feature in Java that enable complex iteration and data

processing. By understanding their structure and applications, developers can effectively

handle multi-dimensional data and create intricate patterns or algorithms.

4.4 LOOP CONTROL STATEMENTS

Loop control statements in Java are used to alter the flow of execution within loops,
providing more control over how and when the loops should terminate or continue. The
primary loop control statements are break, continue, and return. Here's a detailed look at
each:

 break Statement

Purpose: The break statement exits the nearest enclosing loop (for, while, or do-while)
and transfers control to the statement immediately following the loop.

Syntax:

break;

Example:

// Find the first number greater than 10 in an array

int[] numbers = {1, 5, 8, 12, 15};

for (int num : numbers) {

 if (num > 10) {

 System.out.println("First number greater than 10: " + num);

 break; // Exit the loop

 } }

Centre for Distance Education 4.8 Acharya Nagarjuna University

The break statement exits the for loop as soon as a number greater than 10 is found.

 continue Statement

The continue statement skips the current iteration of the nearest enclosing loop and
proceeds to the next iteration of the loop.

Syntax:

continue;

Example:

// Print numbers from 1 to 10, skipping multiples of 3

for (int i = 1; i <= 10; i++) {

 if (i % 3 == 0) {

 continue; // Skip the current iteration

 }

 System.out.println(i);

}

The continue statement skips the printing of numbers that are multiples of 3.

 return Statement

The return statement exits the current method and optionally returns a value. When used
within loops, it also exits the method containing the loop.

Syntax:

return; // To exit the method without returning a value

return value; // To exit the method and return a value

Example:

// Method to find if a number is in an array

public boolean contains(int[] array, int target) {

 for (int num : array) {

 if (num == target) {

OOP with Java 4.9 Control Statements

 return true; // Exit the method and return true

 }

 }

 return false; // Return false if target is not found

}

The return statement exits the method as soon as the target value is found in the array,
returning true.

Summary

 break: Exits the loop and transfers control to the statement following the loop.

 continue: Skips the rest of the code in the current iteration and proceeds to the
next iteration.

 return: Exits the method and optionally returns a value, which can also affect loop
execution when used within loops.

These loop control statements provide the flexibility to manage loop execution flow,
handle specific conditions, and control how and when loops terminate or skip iterations.

4.5 SEARCHING AND SORTING WITH LOOPS

Searching and sorting are fundamental operations in programming, and loops play a

crucial role in implementing these algorithms. Here’s a guide to basic searching and

sorting techniques using loops in Java:

 Searching Algorithms

 Linear Search

Linear search is a simple algorithm that checks each element in a list or array sequentially

until the desired element is found or the end of the list is reached.

Fig 4.3. Linear Search Example

Centre for Distance Education 4.10 Acharya Nagarjuna University

Algorithm:

 Iterate through each element of the array.

 Compare the current element with the target value.

 If a match is found, return the index or the element.

 If the end of the array is reached without finding the target, return a failure

indicator (e.g., -1).

Example:

public class LinearSearch {

 public static int linearSearch(int[] array, int target) {

 for (int i = 0; i < array.length; i++) {

 if (array[i] == target) {

 return i; // Return index if target is found

 }

 }

 return -1; // Return -1 if target is not found

 }

 public static void main(String[] args) {

 int[] numbers = {3, 5, 7, 9, 11};

 int index = linearSearch(numbers, 7);

 System.out.println("Index of 7: " + index);

 }

}

 Sorting Algorithms

 Bubble Sort

Bubble sort is a straightforward sorting algorithm that repeatedly steps through the list,

compares adjacent elements, and swaps them if they are in the wrong order. The process

is repeated until the list is sorted.

Algorithm:

 Iterate through the array.

 Compare each pair of adjacent elements.

 Swap them if they are in the wrong order.

 Repeat the process until no swaps are needed.

Example:

public class BubbleSort {

OOP with Java 4.11 Control Statements

 public static void bubbleSort(int[] array) {

 int n = array.length;

 for (int i = 0; i < n - 1; i++) {

 for (int j = 0; j < n - 1 - i; j++) {

 if (array[j] > array[j + 1]) {

 // Swap elements

 int temp = array[j];

 array[j] = array[j + 1];

 array[j + 1] = temp;

 }

 }

 }

 }

 public static void main(String[] args) {

 int[] numbers = {64, 34, 25, 12, 22};

 bubbleSort(numbers);

 System.out.println("Sorted array: " + Arrays.toString(numbers));

 }

}

 Selection Sort

Selection sort is a simple sorting algorithm that divides the array into two parts: a sorted

part and an unsorted part. It repeatedly selects the smallest (or largest) element from the

unsorted part and moves it to the end of the sorted part.

Algorithm:

 Iterate through the array.

 Find the minimum (or maximum) element in the unsorted part.

 Swap it with the first unsorted element.

 Move the boundary between the sorted and unsorted parts.

Example:

public class SelectionSort {

 public static void selectionSort(int[] array) {

 int n = array.length;

 for (int i = 0; i < n - 1; i++) {

Centre for Distance Education 4.12 Acharya Nagarjuna University

 int minIndex = i;

 for (int j = i + 1; j < n; j++) {

 if (array[j] < array[minIndex]) {

 minIndex = j;

 }

 }

 // Swap the found minimum element with the first unsorted element

 int temp = array[minIndex];

 array[minIndex] = array[i];

 array[i] = temp;

 }

 }

 public static void main(String[] args) {

 int[] numbers = {64, 34, 25, 12, 22};

 selectionSort(numbers);

 System.out.println("Sorted array: " + Arrays.toString(numbers));

 }

}

 Insertion Sort

Insertion sort builds the final sorted array one item at a time. It takes each element from

the input and inserts it into its correct position within the already sorted portion of the

array.

Algorithm:

 Iterate through the array from the second element to the last.

 For each element, compare it to the elements in the sorted portion and insert it into

its correct position.

Example:

public class InsertionSort {

 public static void insertionSort(int[] array) {

 int n = array.length;

 for (int i = 1; i < n; i++) {

 int key = array[i];

 int j = i - 1;

OOP with Java 4.13 Control Statements

 while (j >= 0 && array[j] > key) {

 array[j + 1] = array[j];

 j--;

 }

 array[j + 1] = key;

 }

 }

 public static void main(String[] args) {

 int[] numbers = {64, 34, 25, 12, 22};

 insertionSort(numbers);

 System.out.println("Sorted array: " + Arrays.toString(numbers));

 }

}

 Linear Search: Simple and effective for small datasets or unsorted arrays.

 Bubble Sort: Easy to implement but inefficient for large datasets due to its O(n²)

complexity.

 Selection Sort: Straightforward but also has O(n²) complexity; useful for small

arrays.

 Insertion Sort: More efficient than bubble and selection sorts for small or

partially sorted arrays.

Table 4.1 Differences between linear and binary search

Line Linear search BBinary searchearch

 In linear search, input data doesn’t need
to be sorted .

 Whereas, in binary search, input
data has to be sorted according to
the order.

 It is also referred as sequential search.
 It is also referred to as half-interval

search.

 The time complexity of the linear
search is O(n)

 The time complexity of the binary
search is
0 (logn)

 Multi-dimensional array is used for
linear search.

 A single dimensional array is used
for linear search.

 It operates equality comparisons
 Binary search operates ordering

comparisons

Centre for Distance Education 4.14 Acharya Nagarjuna University

 Linear search is less complex and
involves a slow process

 Binary search is more complex and
has a fast process

These algorithms illustrate the use of loops to perform common operations and help in

understanding how basic data manipulation tasks are carried out in programming.

4.6 BEST PRACTICES

When working with loop statements in Java, following best practices can help ensure that

your code is efficient, readable, and maintainable.

Fig 4.4 Best Practices For Loop Statements

Here are some key best practices for using loops effectively:

 Avoid Infinite Loops

Ensure that your loop has a well-defined exit condition to avoid infinite loops.

Example:

// Infinite loop example (avoid this)

while (true) {

 // Some code

}

// Proper loop with exit condition

int i = 0;

while (i < 10) {

 // Some code

 i++;

}

Always ensure that the loop condition will eventually become false. Consider using loop

control variables and updates within the loop body to prevent infinite execution.

OOP with Java 4.15 Control Statements

 Use Descriptive Loop Variables

Use meaningful names for loop control variables to make your code more readable and

self-explanatory.

Example:

// Less descriptive variable name

for (int i = 0; i < array.length; i++) {

 System.out.println(array[i]);

}

// More descriptive variable name

for (int index = 0; index < array.length; index++) {

 System.out.println(array[index]);

}

Descriptive names help others (and yourself) understand the purpose of the loop variable,

improving code readability.

 Optimize Loop Performance

Optimize loops to avoid unnecessary computations or operations within the loop.

Example:

// Inefficient example

for (int i = 0; i < array.length; i++) {

 for (int j = 0; j < array.length; j++) {

 // Some operations

 }

}

// More efficient example (if array.length does not change)

int length = array.length;

for (int i = 0; i < length; i++) {

 for (int j = 0; j < length; j++) {

 // Some operations

 }

}

Calculating the length of an array or collection once before the loop can reduce redundant

operations and improve performance.

Centre for Distance Education 4.16 Acharya Nagarjuna University

 Minimize Nested Loops

Avoid deep nesting of loops when possible. Deeply nested loops can lead to performance

issues and complex code.

Example:

// Deeply nested loops (use with caution)

for (int i = 0; i < 10; i++) {

 for (int j = 0; j < 10; j++) {

 for (int k = 0; k < 10; k++) {

 // Some operations

 }

 }

}

// Alternative approach

// Use simpler logic if possible or break down into functions

Reducing the depth of nested loops can simplify your code and make it easier to

understand. Look for opportunities to optimize or refactor complex loop structures.

 Use Loop Control Statements Wisely

Use break and continue statements judiciously to control loop execution and improve

readability.

Example:

// Using break to exit early

for (int i = 0; i < array.length; i++) {

 if (array[i] == target) {

 System.out.println("Target found!");

 break;

 }

}

// Using continue to skip iterations

for (int i = 0; i < array.length; i++) {

 if (array[i] % 2 == 0) {

 continue; // Skip even numbers

 }

 System.out.println(array[i]); // Process odd numbers

}

OOP with Java 4.17 Control Statements

break and continue can help manage loop flow effectively, but excessive use can make

code harder to follow. Ensure their usage is clear and purposeful.

 Avoid Unnecessary Computations

Avoid placing computationally expensive operations or function calls inside the loop

condition or body if they do not need to be executed repeatedly.

Example:

// Inefficient example

for (int i = 0; i < array.length; i++) {

 if (array[i] < computeExpensiveValue()) {

 // Some operations

 }

}

// More efficient example

int expensiveValue = computeExpensiveValue();

for (int i = 0; i < array.length; i++) {

 if (array[i] < expensiveValue) {

 // Some operations

 }

}

Compute values outside the loop if they do not change, and reuse the result within the

loop to improve efficiency.

 Ensure Proper Resource Management

When dealing with resources like files or network connections, ensure that resources are

properly managed and closed, typically using try-with-resources or finally blocks.

Example:

// Proper resource management with try-with-resources

try (BufferedReader reader = new BufferedReader(new FileReader("file.txt"))) {

 String line;

 while ((line = reader.readLine()) != null) {

 // Process each line

 }

} catch (IOException e) {

 e.printStackTrace();

Centre for Distance Education 4.18 Acharya Nagarjuna University

}

Ensuring resources are closed properly prevents resource leaks and potential issues with

file or network operations.

 Test with Edge Cases

Test your loops with various input scenarios, including edge cases such as empty arrays,

single-element arrays, or large datasets.

Example:

// Test edge cases

int[] emptyArray = {};

int[] singleElementArray = {1};

int[] largeArray = new int[10000]; // Large dataset

// Run tests for these scenarios

Testing with different scenarios ensures that your loops handle various input conditions

correctly and robustly.

Following these best practices helps you write efficient, readable, and maintainable loop-

based code. By avoiding common pitfalls and optimizing loop performance, you can

improve the quality of your Java applications and ensure that they function as intended.

4.7 SUMMARY

Loop statements in Java are essential control structures that allow developers to execute a
block of code multiple times, facilitating tasks such as iteration over data, repetitive
processing, and dynamic control flow. Java offers three primary types of loops: for,
while, and do-while. The for loop is best suited for scenarios with a known number of
iterations, while the while loop is ideal for cases where the number of iterations is
uncertain, and the do-while loop guarantees at least one execution of the loop body.
Nested loops enable handling complex data structures like multi-dimensional arrays and
generating intricate patterns. Best practices for using loops include avoiding infinite
loops, optimizing performance, and minimizing deep nesting. Effective use of loop
control statements (break, continue, and return) further enhances loop management. By
adhering to these principles, developers can write efficient, maintainable, and robust loop
constructs in Java, addressing a wide range of programming challenges.

4.8 TECHNICAL TERMS

 while

 for

 do-while

 nested loop

OOP with Java 4.19 Control Statements

 break

 continue

 return

4.9 SELF ASSESSMENT QUESTIONS

Essay questions:
1. Explain the structure and usage of a for loop in Java, and provide an example.
2. Describe the use of nested loops in Java and provide an example where nested

loops are necessary.
3. Discuss how you would handle performance optimization when using loops in

Java. Provide an example.
4. Explain the difference between using a while loop and a do-while loop with an

example. When would you prefer one over the other?
5. How do loop control statements like break and continue affect loop execution?

Provide examples of their use.

Short questions:
1. What is a for loop in Java?
2. How does a while loop differ from a do-while loop in Java?
3. What is the purpose of the break statement in a loop?
4. What does the continue statement do in a loop?
5. How can you exit a loop early based on a condition?

4. 10 SUGGESTED READINGS

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021),

McGraw-Hill Education

2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly

Media

3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley

Professional

AUTHOR: Dr. KAMPA LAVANYA

LESSON- 5

ADVANCE JAVA CONCEPTS

OBJECTIVES:

After going through this lesson, you will be able to

 Learn about various advanced java concepts

 Understand about array concepts

 Explore about formatting output

 Explore various operations on arrays

 Learn the different ways to create strings

 Understand the concept of string immutability

 Explore the impact of string operations on performance.

 Understand the concept of recursion.

STRUCTURE OF THE LESSION:

5.1 Introduction

5.2 Formatting Output

5.3 Arrays

5.4 Types of Arrays

5.5 Operation performed on Arrays

5.6 Strings

5.7 String class methods

5.8 String comparison

5.9 Immutability of Strings

5.10 Recursion

5.11 this keyword

5.12 garbage collection

5.13 autoboxing and unboxing

5.14 Summary

5.15 Technical Terms

5.16 Self-Assessment Questions

5.17 Further Readings

Centre for Distance Education 5.2 Acharya Nagarjuna University

5.1 INTRODUCTION

This chapter introduces key Java programming concepts, beginning with Formatting Output,
which demonstrates methods like printf and String.format to produce well-structured output.
The topic of Arrays explores storing collections of similar data, detailing Types of Arrays
such as single-dimensional and multi-dimensional arrays, and their Creation through
declaration, initialization, and access. The Operations on Arrays section covers essential tasks
like traversal, sorting, and searching. Moving to Strings, the chapter explains their immutable
nature, supported by String Class Methods for manipulation, and techniques for String
Comparison using equals(), ==, and compareTo(). Recursion introduces solving problems by
having methods call themselves, while the this Keyword clarifies referencing the current
object. Garbage Collection highlights Java's automatic memory management, ensuring
unused objects are removed, and Autoboxing and Unboxing describes the seamless
conversion between primitives and their wrapper classes. Together, these topics provide a
comprehensive understanding of Java's core functionalities.

5.2 FORMATTED OUTPUT

Formatted output in Java allows you to control how data is displayed, ensuring readability
and precision. Java provides several mechanisms for formatting output, primarily through the
printf and String.format methods, which follow a similar syntax.

 printf Method

The printf method, part of java.io.PrintStream, is used to format output directly to the
console.

Syntax:

System.out.printf(formatString, arguments);

 formatString: Specifies the format.

 arguments: The values to be formatted.

Example:

public class FormattedOutputExample {

 public static void main(String[] args) {

 int number = 123;

 double pi = 3.14159;

 String name = "Alice";

OOOP with Java 5.3 Advance Java Concepts

 System.out.printf("Integer: %d\n", number); // Output: Integer: 123

 System.out.printf("Float: %.2f\n", pi); // Output: Float: 3.14

 System.out.printf("Name: %s\n", name); // Output: Name: Alice

 }

}

 Placeholders in Format Strings

Placeholders are used to define how values will be formatted.

Table 5.1 Placeholders in Format Strings

Specifier Description

%d Decimal integer

%f Floating-point number

%.nf Floating-point with n decimal places

%s String

%c Character

%x Hexadecimal integer

%o Octal integer

%e Scientific notation (e.g., 1.23e+03)

Example with Multiple Placeholders:

System.out.printf("Name: %s, Age: %d, GPA: %.2f\n", "Bob", 20, 3.75);

// Output: Name: Bob, Age: 20, GPA: 3.75

Centre for Distance Education 5.4 Acharya Nagarjuna University

 String.format Method

This method formats a string without printing it directly. It is useful for creating formatted
strings for further use.

Syntax:

String formattedString = String.format(formatString, arguments);

Example:

public class StringFormatExample {

 public static void main(String[] args) {

 int age = 25;

 String message = String.format("I am %d years old.", age);

 System.out.println(message); // Output: I am 25 years old.

 }

}

 Flags for Formatting

Flags modify the output format to include alignment, padding, or special symbols.

 Table 5.2 Flags for Formatting

Flag Description Example

- Left-align the output System.out.printf("%-10s", "Hello");

+ Include a sign for numbers System.out.printf("%+d", 123); // +123

0 Pad with zeros System.out.printf("%05d", 42); // 00042

, Include grouping separators System.out.printf("%,d", 1000000); // 1,000,000

(Enclose negative numbers in parentheses System.out.printf("%(d", -42); // (42)

OOOP with Java 5.5 Advance Java Concepts

 Formatting Dates and Times

The printf and String.format methods also support date and time formatting using the %t or
%T specifiers.

Example:

import java.util.Date;

public class DateFormattingExample {

 public static void main(String[] args) {

 Date today = new Date();

 System.out.printf("Current date: %tF\n", today); // Output: YYYY-MM-DD

 System.out.printf("Current time: %tT\n", today); // Output: HH:MM:SS

 }

}

5.3. ARRAYS

Java arrays are a fundamental data structure that allows developers to store multiple values of
the same type in a single, contiguous block of memory. An array in Java is a collection of
similar data types, and it is indexed, meaning each element in the array is identified by a
specific number, known as an index. Arrays are widely used in Java programming for various
tasks, including storing lists of items, manipulating data, and implementing algorithms that
require data storage and retrieval. Understanding arrays is essential for any Java programmer
as they provide the foundation for more complex data structures and algorithms.

In Java, arrays are objects that are dynamically allocated on the heap. The size of an array is
fixed at the time of its creation, which means that once an array is created, it cannot grow or
shrink. This fixed size is both a strength and a limitation of arrays. On the one hand, it allows
for efficient memory management since the memory required for an array is allocated in one
go, making access to its elements fast and predictable. On the other hand, it means that if you
need to add more elements than the array can hold, you'll need to create a new array with a
larger size and copy the elements over.

There are different types of arrays in Java, including single-dimensional and multi-
dimensional arrays. A single-dimensional array is the simplest form of an array, which can be
thought of as a list of elements, all of the same type. Multi-dimensional arrays, on the other
hand, are arrays of arrays. The most common type of multi-dimensional array is the two-

Centre for Distance Education 5.6 Acharya Nagarjuna University

dimensional array, which can be visualized as a grid or table of elements. These multi-
dimensional arrays are useful for representing more complex data structures, such as matrices
or graphs.

In addition to their basic functionality, Java arrays come with a host of utility functions
provided by the `java.util.Arrays` class. This class includes static methods that can perform
tasks such as sorting arrays, filling arrays with a specific value, copying arrays, and
converting arrays to strings. These utilities make working with arrays in Java more flexible
and powerful, allowing developers to handle arrays in a more sophisticated and streamlined
manner. As such, arrays are not just a collection of elements but are a robust tool for
managing and manipulating data in Java.

5.4. TYPES OF ARRAYS

In Java, arrays can be categorized into several types based on their dimensions and structure.

A one-dimensional array in java is an object. They are dynamically created and may be
assigned to variables of type Object. An Object class in java is the parent class of all classes
by default. All the methods in the class Object can be invoked on an array.

There are two types of array:

 One-dimensional array

 Multi-dimensional array

5.1 types of arrays in Java

 One-dimensional array

A one-dimensional array, often referred to as a vector, is a data structure that stores a
sequence of elements of the same type in a contiguous block of memory. Here’s a breakdown
of its key characteristics:

Characteristics of One-Dimensional Arrays:

1. Single Index Access: Each element in the array can be accessed using a single
index. For example, in an array arr, arr[0] accesses the first element, arr[1]
accesses the second element, and so on.

OOOP with Java 5.7 Advance Java Concepts

2. Fixed Size: The size of a one-dimensional array is determined when it is created
and cannot be changed. This means the number of elements it can hold is fixed.

3. Contiguous Memory: The elements of the array are stored in contiguous memory
locations. This makes accessing elements very efficient because you can directly
compute the memory address of any element based on its index.

4. Homogeneous Elements: All elements in the array must be of the same data type,
such as integers, floats, characters, or any user-defined type

Figure 5.2 Single - dimensional array representation

Syntax:

dataType[] arrayName; // Declaration

arrayName = new dataType[arraySize]; // Instantiation

// or

dataType[] arrayName = new dataType[arraySize]; // Declaration and instantiation

Example:

int[] numbers = new int[5]; // Creates an array of integers with 5 elements

numbers[0] = 10; // Assigns the value 10 to the first element

numbers[1] = 20; // Assigns the value 20 to the second element

// Declaring, instantiating, and initializing an array in one line

String[] students = {"Shourya "Arya", "Surya"};

System.out.println(students[0]); // Outputs "Arya"

Centre for Distance Education 5.8 Acharya Nagarjuna University

Arrays can be initialized when they are declared. The process is much the same as that used
to initialize the simple types. An array initializer is a list of comma-separated expressions
surrounded by curly braces. The commas separate the values of the array elements. The array
will automatically be created large enough to hold the number of elements you specify in the
array initializer. There is no need to use new.

For example, to store the number of days in each month, the following code creates an
initialized array of integers:

// An improved version of the previous program.

class AutoArray
{
 public static void main(String args[])
{
int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
System.out.println("April has " + month_days[3] + " days.");
}
}

Example Program 1: Java Program to Illustrate Wrong Way of Copying an Array

// A Java program to demonstrate that simply assigning one array reference is incorrect

public class Sample {
 public static void main(String[] args)
 {
 int a[] = { 56, 34, 32 };

 // Create an array b[] of same size as a[]
 int b[] = new int[a.length];

 // Doesn't copy elements of a[] to b[], only makes b refer to same location
 b = a;

 // Change to b[] will also reflect in a[] as 'a' and 'b' refer to same location.
 b[0]++;

 System.out.println("Contents of a[] ");
 for (int i = 0; i < a.length; i++)
 System.out.print(a[i] + " ");

 System.out.println("\n\nContents of b[] ");
 for (int i = 0; i < b.length; i++)

OOOP with Java 5.9 Advance Java Concepts

 System.out.print(b[i] + " ");
 }
}

Output:

Contents of a[]

56 34 32

Contents of b[]

56 34 32

Example program 2:

import java.util.Arrays;

class SrtAry {

 public static void main(String args[])

 {

 int[] arr = { 25, -34, 45, 78, 99, -51, 230 };

 System.out.println("The original array is: ");

 for (int num : arr) {

 System.out.print(num + " ");

 }

 Arrays.sort(arr);

 System.out.println("\nThe sorted array is: ");

 for (int num : arr) {

 System.out.print(num + " ");

 }

 }

}

Centre for Distance Education 5.10 Acharya Nagarjuna University

The original array is:

25, -34, 45, 78, 99, -51, 230

The sorted array is:

-42 -2 5 7 23 87 509

 Multi-Dimensional Arrays

Multi-dimensional arrays are arrays that contain other arrays as their elements. The most
common form is the two-dimensional array, which can be visualized as a table or grid.
However, Java supports arrays with more than two dimensions.

In Java, multidimensional arrays are actually arrays of arrays. These, as we might expect,
look and act like regular multidimensional arrays. However, as you will see, there are a
couple of subtle differences.

 Two-Dimensional Arrays

A two-dimensional array in Java is essentially an array of arrays. It is often used to represent
matrices, tables, or grids.

To declare a multidimensional array variable, specify each additional index using another set
of square brackets.

Conceptually, this array will look like the one shown in Figure 5.2

Syntax:

dataType[][] arrayName; // Declaration

arrayName = new dataType[rows][columns]; // Instantiation

// or

dataType[][] arrayName = new dataType[rows][columns]; // Declaration and instantiation

OOOP with Java 5.11 Advance Java Concepts

Figure 5.3 structure of multi-dimensional array

For example, the following declares a twodimensional array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented as
an array of arrays of int..

More examples:

int[][] matrix = new int[3][3]; // Creates a 3x3 matrix

matrix[0][0] = 1; // Assigns 1 to the element at first row, first column

matrix[0][1] = 2; // Assigns 2 to the element at first row, second column

// declaring, instantiating, and initializing a 2D array in one line

int[][] table = {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9}

};

System.out.println(table[1][2]);

The above code outputs 6 (second row, third column)

Centre for Distance Education 5.12 Acharya Nagarjuna University

Each type of array in Java serves different use cases depending on the data structure
requirements. Single-dimensional arrays are straightforward and useful for simple lists, multi-
dimensional arrays are excellent for representing grid-like structures, and jagged arrays offer
flexibility when dealing with non-uniform data.

Write a java program to perform addition on two matrices

public class MatAdd
{
 public static void main(String args[])
 {
 //creating two matrices
 int a[][]={{1,3,4},{2,4,3},{3,4,5}};
 int b[][]={{1,3,4},{2,4,3},{1,2,4}};

 //creating another matrix to store the sum of two matrices
 int c[][]=new int[3][3]; //3 rows and 3 columns

 //adding and printing addition of 2 matrices
 for(int i=0;i<3;i++)
 {
 for(int j=0;j<3;j++)
 {
 c[i][j]=a[i][j]+b[i][j]; //use - for subtraction
 System.out.print(c[i][j]+" ");
 }
 System.out.println();//new line
 }
 }
 }

5.5 OPERATION PERFORMED ON ARRAYS

The following are some common operations that can be performed on arrays in Java

 Modifying Elements:

We can modify an element in an array by directly assigning a new value to a specific index.

Example:

int[] ages = {10, 20, 30, 40, 50};

// Modifying the second element
ages[1] = 25;

OOOP with Java 5.13 Advance Java Concepts

// Printing the modified array
System.out.println(ages[1]); // Output: 25

 Traversing an Array

Traversing an array means accessing each element of the array one by one. This can be done
using a `for` loop or an enhanced `for` loop (also known as the "for-each" loop).

Example:

int[] ages = {10, 20, 30, 40, 50};

// Using a traditional for loop
for (int i = 0; i < ages.length; i++) {
 System.out.println(ages[i]);
}

// Using an enhanced for loop
for (int age : ages) {
 System.out.println(age);
}

 Finding the Length of an Array

The length of an array (number of elements it can hold) can be found using the `length`
property.

Example:

int[] ages = {10, 20, 30, 40, 50};

// Finding the length of the array
System.out.println("The length of the array is: " + ages.length);

Output: 5
Figure 5.4 structure of multi-dimensional array

Centre for Distance Education 5.14 Acharya Nagarjuna University

 Copying an Array

We can copy elements from one array to another using the `System.arraycopy()` method or
`Arrays.copyOf()` from the `java.util.Arrays` class.

Example:

int[] source = {1, 2, 3, 4, 5};
int[] destination = new int[5];

// Copying elements using System.arraycopy()
System.arraycopy(source, 0, destination, 0, source.length);

for (int num : destination) {
 System.out.println(num);
}
 Sorting an Array

Java provides a built-in method to sort arrays using the `Arrays.sort()` method from the
`java.util.Arrays` class.

Example:

import java.util.Arrays;

int[] numbers = {5, 2, 8, 3, 1};

// Sorting the array
Arrays.sort(numbers);

for (int number : numbers) {
 System.out.println(number);
}

Output: 1 2 3 5 8

 Accessing an element

Accessing an element from a multidimensional array in Java is done using multiple indices,
one for each dimension.

System.out.println(matrix[1][2]);

 matrix[1] refers to the second row (index 1) of the array.

 matrix[1][2] refers to the third element (index 2) in the second row.

OOOP with Java 5.15 Advance Java Concepts

Output: 5

 Traversing a 2D array

The process of accessing an individual element can be used during a 2D array traversal,
which can be used to return all elements in a 2D array.

For a 2D array, this initial traversal is used to access each array in the 2D array, and a nested
for loop is needed to access each element within the selected array:

for (int i = 0; i < matrix.length; i++) {

 for (int j = 0; j < matrix[i].length; j++) {

 System.out.print(matrix[i][j] + " ");

 }

 System.out.println();

}

 Searching an Element

We can search for an element in an array using a loop or using built-in methods like
`Arrays.binarySearch()`.

Example:

import java.util.Arrays;

int[] numbers = {1, 2, 3, 4, 5};

// Searching for an element (binary search requires the array to be sorted)
int index = Arrays.binarySearch(numbers, 3);

if (index >= 0) {
 System.out.println("Element found at index: " + index);
} else {
 System.out.println("Element not found");
}

Centre for Distance Education 5.16 Acharya Nagarjuna University

5.6 STRINGS

In Java, a 'String' is a sequence of characters. It is one of the most commonly used data types
and is implemented as a class ('java.lang.String'). Strings are immutable, meaning once a
'String' object is created, it cannot be changed. This immutability offers benefits such as
thread safety and efficient memory usage.

 Creating Strings

There are several ways to create strings in Java:

 Using String Literals: When a string is created using string literals, it is stored in the
string pool. If the same string literal is used again, Java reuses the string from the pool
instead of creating a new object.

Example:

 String str1 = "Hello, World!";

 Using the 'new' Keyword: This creates a new string object, bypassing the string pool.

Example:

 String str2 = new String("Acharya Nagarjuna University”)

 Using Character Arrays: A string can be created from a character array using the
'String' constructor.

Example:

char[] charArray = {‘A’, ‘c’, ‘h’, ‘a’, ‘r’,’y’,’a’};

String str3 = new String(charArray);

5.7 STRING CLASS METHODS

The 'String' class provides many useful methods for manipulating and working with strings.
Here are some common ones:

1. length(): Returns the length of the string.

 String str = "University";

 int len = str.length();

 Output: 9

OOOP with Java 5.17 Advance Java Concepts

 2. charAt(int index): Returns the character at the specified index.

 char ch = str.charAt(1);

 Output: 'n'

3. substring(int beginIndex, int endIndex): Returns a substring from the specified
'beginIndex' to 'endIndex'.

 String substr = str.substring(1, 4);

 Output: "niv"

4. indexOf(String str): Returns the index of the first occurrence of the specified substring.

 int index = str.indexOf("v");

Output: 3

5. toLowerCase()' and 'toUpperCase(): Converts all characters in the string to lowercase or
uppercase.

 String lower = str.toLowerCase();

Output: "university "

 String upper = str.toUpperCase();

Output: "UNIVERSITY"

6. trim(): Removes leading and trailing whitespace.

 String strWithSpaces = " Surya ";

 String trimmedStr = strWithSpaces.trim();

Output: "Surya"

7. 'replace(char oldChar, char newChar)': Replaces occurrences of a specified character with
another character.

 String replacedStr = str.replace('t', 'Z');

 Output: " UniversiZy "

Centre for Distance Education 5.18 Acharya Nagarjuna University

8. equals(Object obj): Compares the string to another object for equality.

 String str2 = "Hello";

 boolean isEqual = str.equals(str2);

 Output: true

9. equalsIgnoreCase(String anotherString): Compares two strings, ignoring case
considerations.

 String str3 = "university";

 boolean isEqualIgnoreCase = str.equalsIgnoreCase(str3);

 Output: true

10. split(String regex): Splits the string around matches of the given regular expression.

 String sentence = "Acharya Nagarjuna University";

 String[] words = sentence.split(" ");

Output: ["Acharya”, “Nagarjuna”, “University"];

5.8 STRING COMPARISON

1. equals(): Compares two strings for content equality.

 String str1 = "Hello";

 String str2 = "Hello";

 boolean result = str1.equals(str2);

 Output: true

 2. equalsIgnoreCase(): Compares two strings for equality, ignoring case.

 String str3 = "hello";

 boolean result = str1.equalsIgnoreCase(str3);

 Output: true

3. compareTo(): Compares two strings lexicographically.

The 'compareTo' method returns:

OOOP with Java 5.19 Advance Java Concepts

 - '0' if the strings are equal

 - A positive number if the first string is lexicographically greater

 - A negative number if the first string is lexicographically smaller

Example:

 String str4 = "apple";

 String str5 = "banana";

 int comparison = str4.compareTo(str5);

 Output: Negative number (-1)

4. '==' operator: Compares references, not values. It checks if two strings point to the same
memory location.

 String str6 = new String("Hello");

 boolean isSameReference = (str1 == str6);

 Output: false

 5.9 IMMUTABILITY OF STRINGS

Strings in Java are immutable. This means once a 'String' object is created, its value cannot be
changed. Any modification to a string results in the creation of a new string object.

Why Strings Are Immutable:

1. Security: Strings are frequently used as parameters in network connections, file paths, etc.
Immutable strings ensure that these values cannot be changed once created, reducing security
risks.

2. Synchronization and Concurrency: Immutable strings are inherently thread-safe since
their values cannot change after creation. This eliminates the need for synchronization when
multiple threads are working with strings.

3. Performance: Java's string pool reuses immutable string literals, which saves memory and
reduces the overhead of creating new string objects.

Example 1:

String str = "Hello";

str.concat(" World"); // The original string 'str' is not modified

Centre for Distance Education 5.20 Acharya Nagarjuna University

System.out.println(str);

Output: "Hello"

Example 2:

String newStr = str.concat(" World");

System.out.println(newStr);

Output: "Hello World"

In this example, 'str.concat(" World")' does not modify 'str'. Instead, it creates a new string
'"Hello World"' and returns it. The original string 'str' remains unchanged, demonstrating the
immutability of strings in Java.

5.10 RECURSION

Recursion is a programming technique where a method calls itself directly or indirectly to
solve a problem. Each recursive call works on a smaller subproblem until a base condition is
met, at which point the recursion stops. Recursion is often used for problems that can be
broken down into similar subproblems, such as mathematical computations, searching,
sorting, and traversing data structures.

Key Components of Recursion

 Base Case: The condition that stops the recursion. Without it, the recursion will go into an
infinite loop, causing a stack overflow error.

 Recursive Case: The part of the method that breaks the problem into smaller subproblems
and calls itself.

Example: Factorial Calculation

The factorial of a number 𝑛

public class RecursionExample {

 public static int factorial(int n) {

 // Base case: factorial of 0 is 1

 if (n == 0) {

 return 1;

 }

 // Recursive case

 return n * factorial(n - 1);

OOOP with Java 5.21 Advance Java Concepts

 }

 public static void main(String[] args) {

 int number = 5;

 System.out.println("Factorial of " + number + " is: " + factorial(number));

 }

}

Output:

Factorial of 5 is: 120

5.11 THIS KEYWORD

The this keyword in Java is a reference variable that refers to the current object of a class. It
is used to resolve ambiguity between class attributes and parameters, invoke other
constructors, or pass the current object to a method or constructor. The this keyword is one of
the most commonly used constructs in object-oriented programming.

1. Referencing Instance Variables

When local variables in a method or constructor have the same name as instance variables,
the this keyword distinguishes between them.

Example:

class Example {

 int value;

 // Constructor

 Example(int value) {

 this.value = value; // Refers to the instance variable

 }

 void display() {

 System.out.println("Value: " + this.value);

 }

}

Centre for Distance Education 5.22 Acharya Nagarjuna University

public class Main {

 public static void main(String[] args) {

 Example obj = new Example(10);

 obj.display(); // Output: Value: 10

 }

}

2. Calling Another Constructor

The this() syntax can be used to call another constructor in the same class. This is known as
constructor chaining.

Example:

class Person {

 String name;

 int age;

 // Constructor 1

 Person(String name) {

 this(name, 0); // Calls Constructor 2

 }

 // Constructor 2

 Person(String name, int age) {

 this.name = name;

 this.age = age;

 }

 void display() {

 System.out.println("Name: " + name + ", Age: " + age);

 }

}

public class Main {

OOOP with Java 5.23 Advance Java Concepts

 public static void main(String[] args) {

 Person p = new Person("Alice");

 p.display(); // Output: Name: Alice, Age: 0

 }

}

3. Passing the Current Object

The this keyword can be used to pass the current object to another method or constructor.

class A {

 void show(B b) {

 b.display(this);

 }

}

class B {

 void display(A a) {

 System.out.println("Method called using current object.");

 }

}

public class Main {

 public static void main(String[] args) {

 A a = new A();

 B b = new B();

 a.show(b); // Output: Method called using current object.

 }

}

Centre for Distance Education 5.24 Acharya Nagarjuna University

4. Returning the Current Object

The this keyword can be used to return the current object from a method. This is useful for
method chaining.

Example:

class Example {

 int value;

 Example setValue(int value) {

 this.value = value;

 return this; // Returns the current object

 }

 void display() {

 System.out.println("Value: " + value);

 }

}

public class Main {

 public static void main(String[] args) {

 Example obj = new Example();

 obj.setValue(20).display(); // Method chaining

 }

}

5.12 GARBAGE COLLECTION

Garbage Collection (GC) in Java is an automatic process that helps manage memory by
removing objects that are no longer in use or referenced. This helps in freeing up memory
and prevents memory leaks, ensuring efficient use of system resources. Java's garbage
collector (GC) is part of the Java Virtual Machine (JVM), which automatically handles
memory management.

While garbage collection is mostly automatic, you can suggest that the JVM perform garbage
collection using System.gc(), but it's not guaranteed that the garbage collector will run
immediately or at all.

System.gc(); // Suggests that the JVM performs garbage collection

OOOP with Java 5.25 Advance Java Concepts

However, relying on System.gc() is discouraged as the JVM decides when to run garbage
collection based on its own internal algorithms.

Finalization in Java

 finalize() method: Prior to garbage collection, an object may override the finalize()
method to perform cleanup tasks, such as closing resources (files, network
connections, etc.).

 Note: The finalize() method is deprecated in modern Java versions due to its
unpredictability and performance issues. It's better to use try-with-resources or
explicitly close resources.

Example:

class MyClass {

 @Override

 protected void finalize() throws Throwable {

 System.out.println("Cleanup before object is garbage collected.");

 }

}

public class GarbageCollectionExample {

 public static void main(String[] args) {

 MyClass obj = new MyClass();

 obj = null; // Object is now eligible for garbage collection

 System.gc(); // Suggests garbage collection

 }

}

Advantages of Garbage Collection

1. Automatic Memory Management: Developers do not need to manually manage
memory allocation and deallocation, reducing the chances of memory leaks.

2. Improved Performance: By reclaiming memory that is no longer in use, the GC
helps improve overall system performance.

Centre for Distance Education 5.26 Acharya Nagarjuna University

3. Prevents Memory Leaks: Unused objects are automatically cleared, preventing
memory from being consumed by orphaned objects.

Disadvantages of Garbage Collection

1. Performance Overhead: Garbage collection consumes system resources, which may
cause occasional pauses (known as GC pauses) in an application, especially with
large heap sizes.

2. Unpredictability: The exact time when garbage collection occurs is not predictable,
and thus developers may not have control over when resources are freed.

3. Dependence on JVM: The garbage collection process is JVM-specific, meaning the
exact implementation can vary depending on the JVM being used.

5.13AUTOBOXING AND UNBOXING

Autoboxing and Unboxing are features in Java that allow for the automatic conversion
between primitive types and their corresponding wrapper classes (e.g., int to Integer, double
to Double, etc.). These conversions make it easier to work with primitive types and objects,
especially in situations like collections (e.g., ArrayList) that can only hold objects.

 Autoboxing

Autoboxing refers to the automatic conversion of a primitive type into its corresponding
wrapper class (i.e., object). This process happens automatically when a primitive type is
assigned to a variable of a wrapper class type, or when a primitive value is passed as an
argument to a method that expects an object.

public class AutoboxingExample {

 public static void main(String[] args) {

 int primitiveInt = 5;

 // Autoboxing: primitive int is automatically converted to Integer object

 Integer wrapperInt = primitiveInt;

 System.out.println("Wrapper Integer: " + wrapperInt); // Output: Wrapper Integer: 5

 }

}

In this example, the primitive int is automatically converted into an Integer object. The
compiler handles the conversion automatically, making it easier to work with primitive types
as objects.

OOOP with Java 5.27 Advance Java Concepts

 Unboxing

Unboxing refers to the automatic conversion of a wrapper class object into its corresponding
primitive type. This happens when a wrapper object is assigned to a variable of the
corresponding primitive type, or when a wrapper object is passed to a method expecting a
primitive type.

public class UnboxingExample {

 public static void main(String[] args) {

 Integer wrapperInt = 10; // Autoboxing: int to Integer

 // Unboxing: Integer object is automatically converted to primitive int

 int primitiveInt = wrapperInt;

 System.out.println("Primitive int: " + primitiveInt); // Output: Primitive int: 10

 }

}

In this example, the Integer object is automatically converted to a primitive int. This
conversion is handled by Java automatically, simplifying the process.

5.14 SUMMARY

In conclusion, the topics explored in Java, such as Formatting Output, Arrays, Strings, and
Recursion, highlight essential features that enhance programming efficiency and
effectiveness. Arrays provide structured data storage, with various types and creation
methods, while operations on arrays facilitate efficient data manipulation. Strings in Java are
immutable objects, and understanding their class methods, comparison, and immutability is
crucial for working with text. Recursion offers a powerful technique for solving complex
problems by breaking them into simpler subproblems, and the this keyword helps manage
instance variables and object references. Garbage Collection automates memory
management, ensuring efficient resource usage, and Autoboxing and Unboxing streamline the
interaction between primitive types and their wrapper classes. These concepts collectively
make Java a versatile and robust language, offering both simplicity and flexibility for
developers.

5.15 TECHNICAL TERMS

Java Array, single – dimension, multi – dimension, String, Immutability,Recursion, this
keyword.

Centre for Distance Education 5.28 Acharya Nagarjuna University

5.16 SELF ASSESSMENT QUESTIONS

Essay questions:
1. What is an array in Java, and how is it different from a single variable?
2. How do you find the length of an array in Java? Provide a code example.
3. Explain the difference between == and equals() when comparing strings in Java.
4. Give an example of how to declare and initialize a multi-dimensional array in

Java.
5. Describe about this keyword.

 Short Answer Questions:

1. Discuss the advantages and disadvantages of using arrays in Java. Include
examples to illustrate your points.

2. Write a java program to perform multiplication on two matrices
3. Explain the concept of immutability in Java strings. How does this feature benefit

Java programs, and what are some potential drawbacks?
4. Examine the role of the length property in arrays and strings in Java. How does it

differ between the two, and why is this distinction important?
5. Write about Garbage collection.

5.17 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,
McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,
Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,
2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,
2014

AUTHOR: Dr. U. Surya Kameswari

LESSON- 06

INHERITANCE

AIMS AND OBJECTIVES

By the end of this chapter, you should be able to:

 Understanding the Concept of Inheritance

 Exploring Different Types of Inheritance

 Applying Inheritance to Real-World Problems

 Recognizing the Limitations of Inheritance

 Define Key Inheritance Terminology

 Create Simple Inheritance Hierarchies

 Use the super Keyword Effectively

 Apply Inheritance in Object-Oriented Design

STRUCTURE

6.1 Introduction

6.2 Basic Syntax and Terminology

6.3 Types of Inheritance

6.4 Method Overriding

6.5 Best Practices

6.6 Case Study: Inheritance in a Real-World Application

 6.7 Summary

6.8 Technical Terms

6.9 Self-Assessment Questions

6.10 Suggested Readings

Centre for Distance Education 6.2 Acharya Nagarjuna University

6.1 INTRODUCTION

Inheritance is a fundamental concept in object-oriented programming that allows a new
class to acquire the properties and behaviors of an existing class. By enabling one class (the
subclass) to inherit fields and methods from another class (the superclass), inheritance
promotes code reuse, simplifies code maintenance, and establishes a natural hierarchy
among classes. This concept not only reduces redundancy but also facilitates the creation of
more flexible and scalable programs, as it allows developers to build on existing code
without modifying it directly.

 Importance of Inheritance

Inheritance is a core concept in object-oriented programming (OOP) that allows a new
class to derive properties and behaviors from an existing class. In Java, inheritance
enables one class, known as a subclass or child class, to inherit fields and methods from
another class, referred to as a superclass or parent class. This mechanism not only
promotes code reuse by allowing new classes to build upon existing ones but also
establishes a hierarchical relationship between classes, reflecting real-world structures
and relationships. Through inheritance, developers can create more modular,
maintainable, and scalable software, as common functionality is centralized in super
classes and extended or customized in subclasses.

Inheritance is crucial in Java and object-oriented programming for several reasons:

 Code Reusability: Inheritance allows developers to reuse existing code by creating
new classes based on existing ones. This reduces redundancy and the effort required
to write new code, as common functionality can be inherited from a superclass.

 Logical Class Hierarchy: Inheritance helps organize code into a logical hierarchy,
reflecting real-world relationships. For example, a "Vehicle" class can serve as a
superclass for "Car," "Bike," and "Truck" subclasses, each inheriting common
properties while introducing specific features.

 Simplified Maintenance: When a change is made in the superclass, it
automatically propagates to all subclasses, making code easier to maintain and
update. This reduces the likelihood of errors and inconsistencies across the
codebase.

 Polymorphism: Inheritance enables polymorphism, where a subclass can be treated
as an instance of its superclass. This allows for more flexible and dynamic code, as
methods can be overridden in subclasses to provide specific implementations while
maintaining a common interface.

 Extensibility: Inheritance makes it easier to extend existing code. Developers can
add new features or modify behaviors in subclasses without altering the original

OOPS with JAVA 6.3 Inhetarnce

superclass code, ensuring that enhancements are made without disrupting existing
functionality.

 Encapsulation and Abstraction: Inheritance supports encapsulation by allowing a
subclass to access protected and public members of the superclass while hiding its
internal implementation details. It also aids in abstraction by allowing higher-level
classes to represent general concepts, while subclasses provide concrete
implementations.

Overall, inheritance is a powerful tool that promotes efficient, organized, and scalable
software development, making it an essential concept in Java and object-oriented
programming.

Fig 6.1 Importance of Inheritance

6.2 BASIC SYNTAX AND TERMINOLOGY

In Java, inheritance is implemented using the extends keyword, which allows a class to
inherit properties and behaviors from another class. Understanding the basic syntax and
terminology is essential for effectively utilizing inheritance in your programs.

 Superclass and Subclass

 Superclass (Parent Class): The class from which properties and methods are
inherited. It represents a more general concept in the hierarchy.

o Example: In a class hierarchy where Vehicle is a superclass, it might define
common attributes like speed and methods like move ().

Centre for Distance Education 6.4 Acharya Nagarjuna University

 Subclass (Child Class): The class that inherits from the superclass. It represents a
more specific concept and can add new properties or override existing ones from the
superclass.

o Example: Car and Bike might be subclasses of Vehicle, inheriting speed
and move () while adding specific attributes like numDoors for Car.

 The extends Keyword

 The extends keyword is used in the class declaration to signify that a class is
inheriting from another class.

o Syntax:

class SubclassName extends SuperclassName {

 // Additional fields and methods

}

o Example:

class Vehicle {

 int speed;

 void move() {

 System.out.println("Vehicle is moving");

 }

 }

class Car extends Vehicle {

 int numDoors;

 void display() {

 System.out.println("Car has " + numDoors + " doors and moves at speed " +
speed);

 }

}

 The super Keyword

OOPS with JAVA 6.5 Inhetarnce

 The super keyword is used in a subclass to refer to the superclass. It can be used to:

o Call a superclass constructor:

class Car extends Vehicle {

 Car() {

 super(); // Calls the constructor of Vehicle

 }

}

o Access a superclass method:

class Car extends Vehicle {

 @Override

 void move() {

 super.move(); // Calls the move() method of Vehicle

 System.out.println("Car is moving");

 }

}

Fig 6.2 Super Keyword in Java

Centre for Distance Education 6.6 Acharya Nagarjuna University

 Access Modifiers and Inheritance

 Public: Public members of a superclass are accessible in the subclass.

 Protected: Protected members are accessible in the subclass and within the same
package.

 Private: Private members are not accessible in the subclass. However, access can
be provided through public or protected getter and setter methods.

 Default (Package-Private): Members with no explicit access modifier (default) are
accessible within the same package but not in subclasses outside the package.

6.3 TYPES OF INHERITANCE

In Java, inheritance allows a class to inherit properties and behaviors from another class.
There are several types of inheritance, each defining a different way in which classes can
relate to each other. However, Java does not support multiple inheritance (where a class
inherits from more than one class) due to the complexity and ambiguity it can introduce.
Below are the primary types of inheritance in Java shown in Figure 8.3 and details
explained in below:

 Single Inheritance: One class inherits from one superclass.

 Multilevel Inheritance: A class inherits from a derived class, forming a chain of
inheritance.

 Hierarchical Inheritance: Multiple classes inherit from the same superclass.

 Multiple Inheritance (Through Interfaces): A class implements multiple interfaces,
allowing for multiple inheritance.

 Hybrid Inheritance: A combination of different types of inheritance, typically
implemented using interfaces.

Fig 6.3 Types of Inheritance

OOPS with JAVA 6.7 Inhetarnce

 Single Inheritance

Single inheritance is when a class inherits from only one superclass. This is the most
common type of inheritance in Java.

 Example:

class Animal {

 void eat() {

 System.out.println("Animal is eating");

 }

}

class Dog extends Animal {

 void bark() {

 System.out.println("Dog is barking");

 }

}

In this example, the Dog class inherits from the Animal class. Dog can use the eat() method
from Animal in addition to its own bark() method.

 Multilevel Inheritance

Multilevel inheritance occurs when a class is derived from another derived class, creating a
chain of inheritance.

 Example:

class Animal {

 void eat() {

 System.out.println("Animal is eating");

 }

}

Centre for Distance Education 6.8 Acharya Nagarjuna University

class Dog extends Animal {

 void bark() {

 System.out.println("Dog is barking");

 }

}

class Puppy extends Dog {

 void weep() {

 System.out.println("Puppy is weeping");

 }

}

Here, the Puppy class inherits from Dog, which in turn inherits from Animal. Puppy can
use the eat() method from Animal and the bark() method from Dog, as well as its own
weep() method.

 Hierarchical Inheritance

Hierarchical inheritance occurs when multiple classes inherit from the same superclass.

 Example:

class Animal {

 void eat() {

 System.out.println("Animal is eating");

 }

}

class Dog extends Animal {

 void bark() {

 System.out.println("Dog is barking");

 }

}

OOPS with JAVA 6.9 Inhetarnce

class Cat extends Animal {

 void meow() {

 System.out.println("Cat is meowing");

 }

}

In this example, both Dog and Cat classes inherit from the Animal class. Each subclass has
its own specific methods (bark() and meow()) in addition to the inherited eat() method.

 Multiple Inheritance

Java does not support multiple inheritance through classes due to the "diamond problem"
(ambiguity caused when a class inherits from two classes that have a method with the same
signature). However, Java allows multiple inheritance through interfaces.

 Example:

interface Animal {

 void eat();

}

interface Pet {

 void play();

}

class Dog implements Animal, Pet {

 @Override

 public void eat() {

 System.out.println("Dog is eating");

 }

 @Override

 public void play() {

 System.out.println("Dog is playing");

 }

}

Here, the Dog class implements two interfaces, Animal and Pet, effectively achieving
multiple inheritance.

Centre for Distance Education 6.10 Acharya Nagarjuna University

 Hybrid Inheritance

Hybrid inheritance is a combination of two or more types of inheritance. In Java, hybrid
inheritance is not supported directly because it often involves multiple inheritance, which
can lead to ambiguity. However, it can be achieved using interfaces.

 Example:

interface Animal {

 void eat();

}

class Mammal {

 void sleep() {

 System.out.println("Mammal is sleeping");

 }

}

class Dog extends Mammal implements Animal {

 @Override

 public void eat() {

 System.out.println("Dog is eating");

 }

}

In this example, Dog class inherits from Mammal (single inheritance) and implements
Animal interface (multiple inheritance through interfaces), creating a hybrid inheritance
scenario.

Table 6.1 Diffrences between various types of inheritance

Type Description

 Single Inheritance

 a derived class is created from a single base
class.

OOPS with JAVA 6.11 Inhetarnce

 Multi-level Inheritance

 a derived class is created from another
derived class.

 Multiple Inheritance

 a derived class is created from more than
one base class

 Hierarchical Inheritance

 more than one derived class is created from
a single base class

 Hybrid Inheritance

 a combination of more than one inheritance

6.4 METHOD OVERLOADING

Method overloading occurs when two or more methods in the same class have the same
name but different parameter lists (different in number, type, or order of parameters). The
compiler determines which method to call based on the method signature at compile time.

Example of Method Overloading:

class MathOperation {

 // Method to add two integers

 int add(int a, int b) {

 return a + b;

 }

 // Overloaded method to add three integers

 int add(int a, int b, int c) {

 return a + b + c;

 }

 // Overloaded method to add two double values

 double add(double a, double b) {

 return a + b;

 }

}

Centre for Distance Education 6.12 Acharya Nagarjuna University

public class TestOverloading {
 public static void main(String[] args) {
 MathOperation mo = new MathOperation();
 // Calling the method with two integers
 System.out.println("Sum of two integers: " + mo.add(10, 20));
 // Calling the method with three integers
 System.out.println("Sum of three integers: " + mo.add(10, 20, 30));
 // Calling the method with two double values
 System.out.println("Sum of two doubles: " + mo.add(10.5, 20.5));
 }
}
Output:
Sum of two integers: 30
Sum of three integers: 60
Sum of two doubles: 31.0
In this example, the add method is overloaded to handle different types of input. The
correct method is selected at compile time based on the arguments passed.

6.5 BEST PRACTICES

Inheritance is a powerful feature in Java that allows a class to inherit properties and
behaviors from another class, promoting code reuse and organization. However, it can also
lead to complexities and potential pitfalls if not used carefully. Here are some best practices
to follow when using inheritance in Java and described in Fig 7.4:

Fig 6.4 Best Practices of Inheritance

OOPS with JAVA 6.13 Inhetarnce

 Favor Composition Over Inheritance

 Composition involves building classes by including instances of other classes that
implement the desired functionality. This is often more flexible and less error-prone
than inheritance.

 Why? Inheritance tightly couples the parent and child classes, making it harder to
change one without affecting the other. Composition allows for more modular,
maintainable, and reusable code.

Example:

class Engine {

 void start() {

 System.out.println("Engine started");

 }

}

class Car {

 private Engine engine;

 Car() {

 engine = new Engine();

 }

 void start() {

 engine.start();

 System.out.println("Car started");

 }

}

Instead of inheriting from an Engine class, the Car class uses composition to include an
Engine instance.

Centre for Distance Education 6.14 Acharya Nagarjuna University

Use Inheritance for "Is-A" Relationships

 Ensure that the relationship between the superclass and subclass genuinely reflects
an "is-a" relationship. The subclass should be a more specific version of the
superclass.

 Why? Misusing inheritance can lead to improper design where subclasses inherit
methods or properties that do not logically apply to them, leading to confusion and
maintenance difficulties.

 Example:

o A Dog class should inherit from an Animal class because a dog "is an"
animal.

o Avoid scenarios like Square inheriting from Rectangle if their relationship
isn't truly "is-a."

 Keep Class Hierarchies Shallow

 Avoid deep inheritance hierarchies (i.e., many levels of inheritance). Prefer flatter
class structures where possible.

 Why? Deep hierarchies can lead to increased complexity, making the code harder to
understand, maintain, and debug. Shallow hierarchies are easier to manage.

 Example:

o If you find yourself creating multiple levels of inheritance, consider whether
some of the intermediate classes can be merged or if composition can
replace some inheritance.

 Avoid Overriding Methods Unnecessarily

 Only override methods when there is a clear need to change or extend the behavior
of the superclass method.

 Why? Unnecessary overriding can introduce bugs and make the code harder to
follow. If the superclass method behavior is sufficient, there's no need to override it.

 Example:

o If a Vehicle class has a startEngine() method that works for all vehicles,
subclasses like Car or Bike should only override it if they need specific
behavior.

OOPS with JAVA 6.15 Inhetarnce

 Use the super Keyword Carefully

 Use the super keyword to access methods and constructors of the superclass, but do
so judiciously.

 Why? Misusing super can lead to unexpected behavior, especially if the superclass
method is not intended to be extended in a particular way.

 Example:

class Animal {

 void sound() {

 System.out.println("Animal sound");

 }

}

class Dog extends Animal {

 @Override

 void sound() {

 super.sound(); // Calls the superclass method

 System.out.println("Dog barks");

 }

}

 Mark Methods and Classes as final When Necessary

 Use the final keyword to prevent classes from being extended or methods from
being overridden when it’s not appropriate for them to be modified.

 Why? Preventing further extension of a class or method helps to maintain the
integrity of your design and ensures that certain behaviors are not unintentionally
altered.

Centre for Distance Education 6.16 Acharya Nagarjuna University

Example:

public final class MathUtils {

 public static final double PI = 3.14159;

 Ensure Proper Use of Constructors

 Ensure that subclass constructors call the appropriate superclass constructor,
especially when the superclass does not have a default constructor.

 Why? Failing to properly initialize a superclass can lead to incomplete object
creation and potential runtime errors.

 Example:

class Animal {

 String name;

 Animal(String name) {

 this.name = name;

 }

}

class Dog extends Animal {

 Dog(String name) {

 super(name); // Call to superclass constructor

 }

}

 Be Cautious with Protected Members

 Use the protected access modifier carefully, as it allows subclasses to access
superclass members directly.

 Why? Overusing protected can expose internal implementation details that should
remain encapsulated, leading to tight coupling and potential misuse.

OOPS with JAVA 6.17 Inhetarnce

 Example:

o Prefer private members with appropriate getter/setter methods over
protected members to maintain encapsulation.

 Use Abstract Classes for Common Functionality

 Use abstract classes when you want to define common behavior that multiple
subclasses should share while allowing for specific implementations in each
subclass.

 Why? Abstract classes provide a way to enforce certain methods while still
allowing for flexibility in subclass behavior.

Example:

abstract class Animal {

 abstract void sound();

 void breathe() {

 System.out.println("Animal is breathing");

 }

}

class Dog extends Animal {

 @Override

 void sound() {

 System.out.println("Dog barks");

 }

}

When using inheritance in Java, it is essential to follow best practices to ensure that your

code remains maintainable, flexible, and understandable. By favoring composition over

inheritance, keeping hierarchies shallow, and carefully managing method overrides and

access modifiers, you can avoid common pitfalls and make the most of inheritance’s

benefits. Proper use of abstract classes, constructors, and documentation further enhances

the effectiveness and clarity of your inheritance-based designs.

Centre for Distance Education 6.18 Acharya Nagarjuna University

6.6 CASE STUDY: INHERITANCE IN A REAL-WORLD APPLICATION

Suppose you are developing a Vehicle Management System for a car rental company. The

system needs to manage different types of vehicles, such as cars, trucks, and motorcycles.

These vehicles share some common characteristics but also have specific features and

behaviors unique to each type. Using inheritance in this scenario allows you to model the

commonalities and differences efficiently.

class Vehicle {

 private String make;

 private String model;

 private int year;

 private String color;

 private String registrationNumber;

 public Vehicle(String make, String model, int year, String color, String

registrationNumber) {

 this.make = make;

 this.model = model;

 this.year = year;

 this.color = color;

 this.registrationNumber = registrationNumber;

 }

 public void displayDetails() {

 System.out.println("Make: " + make);

 System.out.println("Model: " + model);

 System.out.println("Year: " + year);

 System.out.println("Color: " + color);

 System.out.println("Registration Number: " + registrationNumber);

 }

 public double calculateRentalPrice() {

 return 50.0; // Base rental price for any vehicle

 }

}

OOPS with JAVA 6.19 Inhetarnce

class Car extends Vehicle {

 private int numberOfDoors;

 private boolean isConvertible;

 public Car(String make, String model, int year, String color, String

registrationNumber, int numberOfDoors, boolean isConvertible) {

 super(make, model, year, color, registrationNumber);

 this.numberOfDoors = numberOfDoors;

 this.isConvertible = isConvertible;

 }

 @Override

 public void displayDetails() {

 super.displayDetails();

 System.out.println("Number of Doors: " + numberOfDoors);

 System.out.println("Convertible: " + (isConvertible ? "Yes" : "No"));

 }

 @Override

 public double calculateRentalPrice() {

 double basePrice = super.calculateRentalPrice();

 return isConvertible ? basePrice + 30 : basePrice + 20;

 }

}

class Truck extends Vehicle {

 private double cargoCapacity;

 private boolean hasTrailer;

 public Truck(String make, String model, int year, String color, String

registrationNumber, double cargoCapacity, boolean hasTrailer) {

 super(make, model, year, color, registrationNumber);

 this.cargoCapacity = cargoCapacity;

 this.hasTrailer = hasTrailer;

 }

 @Override

 public void displayDetails() {

Centre for Distance Education 6.20 Acharya Nagarjuna University

 super.displayDetails();

 System.out.println("Cargo Capacity: " + cargoCapacity + " tons");

 System.out.println("Has Trailer: " + (hasTrailer ? "Yes" : "No"));

 }

 @Override

 public double calculateRentalPrice() {

 double basePrice = super.calculateRentalPrice();

 return basePrice + (hasTrailer ? 50 : 40);

 }

}

class Motorcycle extends Vehicle {

 private int engineCapacity;

 public Motorcycle(String make, String model, int year, String color, String

registrationNumber, int engineCapacity) {

 super(make, model, year, color, registrationNumber);

 this.engineCapacity = engineCapacity;

 }

 @Override

 public void displayDetails() {

 super.displayDetails();

 System.out.println("Engine Capacity: " + engineCapacity + " cc");

 }

 @Override

 public double calculateRentalPrice() {

 double basePrice = super.calculateRentalPrice();

 return basePrice + (engineCapacity > 1000 ? 25 : 15);

 }

}

public class VehicleManagementSystem {

 public static void main(String[] args) {

 Vehicle car = new Car("Toyota", "Camry", 2020, "Red", "ABC123", 4, false);

OOPS with JAVA 6.21 Inhetarnce

 Vehicle truck = new Truck("Ford", "F-150", 2019, "Blue", "XYZ789", 5.0, true);

 Vehicle motorcycle = new Motorcycle("Harley-Davidson", "Sportster", 2021,

"Black", "MNO456", 1200);

 System.out.println("Car Details:");

 car.displayDetails();

 System.out.println("Rental Price: $" + car.calculateRentalPrice());

 System.out.println("\nTruck Details:");

 truck.displayDetails();

 System.out.println("Rental Price: $" + truck.calculateRentalPrice());

 System.out.println("\nMotorcycle Details:");

 motorcycle.displayDetails();

 System.out.println("Rental Price: $" + motorcycle.calculateRentalPrice());

 }

}

OUTPUT:

Car Details:

Make: Toyota

Model: Camry

Year: 2020

Color: Red

Registration Number: ABC123

Number of Doors: 4

Convertible: No

Rental Price: $70.0

Truck Details:

Make: Ford

Model: F-150

Year: 2019

Color: Blue

Registration Number: XYZ789

Cargo Capacity: 5.0 tons

Has Trailer: Yes

Centre for Distance Education 6.22 Acharya Nagarjuna University

Rental Price: $100.0

Motorcycle Details:

Make: Harley-Davidson

Model: Sportster

Year: 2021

Color: Black

Registration Number: MNO456

Engine Capacity: 1200 cc

Rental Price: $75.0

This case study illustrates how inheritance in Java can be effectively used to model real-

world scenarios. By using inheritance, you can create a flexible, reusable, and

maintainable codebase that is easy to extend and adapt to new requirements. The Vehicle

Management System demonstrates how different vehicle types share common features

through a base class while allowing specific behaviors through subclassing. This

approach reduces code duplication, enhances clarity, and provides a strong foundation for

future development.

7.7 SUMMARY

Inheritance in Java is a core concept of object-oriented programming that allows one class
(the subclass) to inherit fields and methods from another class (the superclass). This
enables code reuse and the creation of a hierarchical class structure, where subclasses can
extend or modify the behaviors of the superclass. Inheritance supports the "is-a"
relationship, ensuring that subclasses can be used interchangeably with their superclass,
promoting flexibility and maintainability in code design. It also allows for method
overriding, enabling polymorphism, where the same method can have different behaviors
in different classes.

6.8 TECHNICAL TERMS

1. Super

2. extends

3. single level

4. Hybrid

5. Multiple

6. Method Overriding

OOPS with JAVA 6.23 Inhetarnce

6.9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the concept of inheritance in Java and how it promotes code reuse and
organization. Provide examples to illustrate your explanation.

2. Discuss the differences between method overloading and method overriding in the
context of inheritance. How does Java handle these concepts at compile-time and
runtime?

3. Describe how the super keyword is used in Java to access superclass methods and
constructors. Provide examples showing its role in constructor chaining and
method invocation.

4. What are the benefits and potential pitfalls of using inheritance in Java? Discuss
the concept of favoring composition over inheritance and provide examples to
support your argument.

5. Explain how the final keyword can be used to prevent inheritance and method
overriding in Java. What are the implications of marking a class or method as
final?

Short questions:

1. What is inheritance in Java?
2. How does the extends keyword work in Java?
3. What is the difference between method overloading and method overriding?

4. What is the purpose of the super keyword in Java?

5. How does the final keyword affect inheritance?

6.10 SUGGESTED READINGS

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021),

McGraw-Hill Education

2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly

Media

3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley

Professional

AUTHOR: Dr. U. Surya Kameswari

LESSON- 07

POLYMORPHISM

AIMS AND OBJECTIVES

By the end of this chapter, you should be able to:

 execute a block of code multiple times, reducing redundancy and ensuring that

repetitive tasks are automated.

 systematically access each element in a collection or array, enabling operations

such as processing, searching, or modifying data.

 dynamically control the flow of execution based on conditions, allowing for

flexible and adaptive programming.

 handle large datasets or perform calculations repeatedly without manually

duplicating code.

 manage and update counters, such as for indexing elements, tracking iterations, or

controlling loops.

These objectives highlight the importance of loop statements in Java for creating

efficient, readable, and maintainable code.

STRUCTURE

7.1 Introduction

7.2 Importance of Polymorphism In Java

7.3 Compile time Polymorphism

7.4 Runtime Polymorphism

7.5 Polymorphism with Interface

7.6 Polymorphism and Abstract Classes

7.7 Advantages and Disadvantages of Polymorphism

7.8 Common Mistakes and Best Practices

 7.9 Summary

7.10 Technical Terms

7.11 Self-Assessment Questions

7.12 Suggested Readings

 Centre for Distance Education 7.2 Acharya Nagarjuna University

7.1 INTRODUCTION

Polymorphism, a core concept in object-oriented programming, refers to the ability
of a single function, method, or operator to operate in different ways based on the context.
In Java, polymorphism allows objects of different classes to be treated as objects of a
common superclass, enabling the same method to behave differently depending on the
object it is acting upon. This feature enhances flexibility and reusability in code, making it
easier to extend and maintain. Through polymorphism, Java developers can write more
generic and scalable programs, where specific behaviors can be altered dynamically at
runtime without altering the code that invokes these behaviors.

7.2 IMPORTANCE OF POLYMORPHISM IN JAVA

Polymorphism is a cornerstone of object-oriented programming (OOP) in Java, playing a
crucial role in the language's design and usage. Here are the key reasons why
polymorphism is important in Java and are shown in Figure 8.1:

 Code Reusability: Polymorphism allows developers to use a single interface to
represent different types of objects. This promotes code reusability as the same code
can operate on objects of different classes without modification, reducing redundancy
and simplifying maintenance.

 Flexibility and Extensibility: Polymorphism enables code to be more flexible and
extensible. By programming to interfaces or base classes, new subclasses or
implementations can be introduced with minimal changes to existing code. This
flexibility allows for easier updates and scaling of applications.

 Dynamic Method Dispatch: With polymorphism, Java supports dynamic method
dispatch, where the method to be executed is determined at runtime. This allows for
more dynamic and responsive applications, where behavior can be altered based on the
actual object type that the reference variable points to at runtime.

 Simplified Code Management: Polymorphism simplifies code management by
reducing the complexity associated with conditional statements or type checks. Instead
of writing multiple conditional branches to handle different types, a single method call
can be used, and polymorphism ensures the correct method is executed based on the
object's type.

 Enhanced Maintainability: Since polymorphism leads to a more modular code
structure, it enhances the maintainability of the software. Changes in one part of the
system (e.g., introducing a new subclass) can be isolated from other parts, leading to
fewer bugs and easier testing and debugging.

 Design Patterns and Frameworks: Polymorphism is a foundational concept behind
many design patterns and frameworks in Java, such as the Strategy Pattern, Observer
Pattern, and Dependency Injection. These patterns leverage polymorphism to create

OOP with Java 7.3 Polymorphism

flexible and reusable code structures, essential for building robust enterprise-level
applications.

Fig 7.1 Importance of Polymorphism with various factors

Example:

interface Animal {

 void sound();

}

class Dog implements Animal {

 public void sound() {

 System.out.println("Woof");

 }

}

 Centre for Distance Education 7.4 Acharya Nagarjuna University

class Cat implements Animal {

 public void sound() {

 System.out.println("Meow");

 }

7.3 COMPILE-TIME POLYMORPHISM

Polymorphism can be classified into two types and described in Figure 8.2.

1. Compile-Time Polymorphism

2. Run-Time Polymorphism

Fig 7.2 Polymorphism classification in Java

Compile-time polymorphism, also known as static polymorphism, is a type of
polymorphism that is resolved during the compilation of the program. In Java, compile-
time polymorphism is achieved through method overloading and operator overloading
(although Java does not support user-defined operator overloading). This form of
polymorphism allows a single method or operator to behave differently based on the
parameters or context in which it is used.

 Method Overloading

Method overloading occurs when two or more methods in the same class have the same
name but different parameter lists (different in number, type, or order of parameters). The
compiler determines which method to call based on the method signature at compile time.

OOP with Java 7.5 Polymorphism

Example of Method Overloading:

class MathOperation {

 // Method to add two integers

 int add(int a, int b) {

 return a + b;

 }

 // Overloaded method to add three integers

 int add(int a, int b, int c) {

 return a + b + c;

 }

 // Overloaded method to add two double values

 double add(double a, double b) {

 return a + b;

 }

}

public class TestOverloading {

 public static void main(String[] args) {

 MathOperation mo = new MathOperation();

 // Calling the method with two integers

 System.out.println("Sum of two integers: " + mo.add(10, 20));

 // Calling the method with three integers

 System.out.println("Sum of three integers: " + mo.add(10, 20, 30));

 // Calling the method with two double values

 System.out.println("Sum of two doubles: " + mo.add(10.5, 20.5));

 }

}

 Centre for Distance Education 7.6 Acharya Nagarjuna University

Output:

Sum of two integers: 30

Sum of three integers: 60

Sum of two doubles: 31.0

In this example, the add method is overloaded to handle different types of input. The
correct method is selected at compile time based on the arguments passed.

Advantages of Compile-time Polymorphism:

1. Improved Code Readability: By using the same method name for different types of
operations, code becomes more intuitive and easier to understand.

2. Enhanced Performance: Since the method to be called is determined at compile
time, there is no overhead associated with dynamic method dispatch.

3. Simplified Maintenance: Overloading allows related operations to be grouped
together under a single method name, making it easier to maintain and update the
code.

Limitations of Compile-time Polymorphism:

1. Limited Flexibility: Since the method selection is done at compile time, it lacks the
flexibility of runtime polymorphism, where decisions can be made dynamically
based on actual object types.

2. No User-defined Operator Overloading: Java does not allow user-defined operator
overloading, unlike some other languages like C++, which limits the scope of
compile-time polymorphism.

Compile-time polymorphism in Java is a powerful tool for creating methods that can handle
different data types or numbers of parameters while maintaining a clean and readable
codebase. It is resolved during the compilation process, which enhances performance but
offers less flexibility compared to runtime polymorphism. Understanding and effectively
using method overloading can greatly improve the design and functionality of Java
programs.

7.4 RUNTIME POLYMORPHISM

Runtime polymorphism, also known as dynamic polymorphism, is a type of
polymorphism that is resolved during the execution of a program. In Java, runtime
polymorphism is achieved through method overriding, where a subclass provides a
specific implementation of a method that is already defined in its superclass. The decision

OOP with Java 7.7 Polymorphism

of which method to invoke is made at runtime, based on the actual object being referred
to by the reference variable.

 Method Overriding

Method overriding occurs when a subclass has a method with the same name, return type,
and parameters as a method in its superclass. The overriding method in the subclass
provides a specific implementation that is different from the one in the superclass.
Key Points of Method Overriding:

 The method in the child class must have the same name, return type, and
parameters as in the parent class.

 The @Override annotation is often used to indicate that a method is intended to
override a method in the superclass.

 The access level of the overriding method cannot be more restrictive than that of
the method in the superclass.

 Only instance methods can be overridden; static methods belong to the class, not
instances, and hence cannot be overridden but can be hidden.

Example of Runtime Polymorphism
class Animal {
 void sound() {
 System.out.println("Animal makes a sound");
 }
}

class Dog extends Animal {
 @Override
 void sound() {
 System.out.println("Dog barks");
 }
}

class Cat extends Animal {
 @Override
 void sound() {
 System.out.println("Cat meows");
 }
}

public class TestPolymorphism {
 public static void main(String[] args) {
 Animal myAnimal;

 myAnimal = new Dog();

 Centre for Distance Education 7.8 Acharya Nagarjuna University

 myAnimal.sound(); // Outputs: Dog barks

 myAnimal = new Cat();
 myAnimal.sound(); // Outputs: Cat meows
 }
}

Output:
Dog barks
Cat meows

In this example, the sound() method is overridden in both the Dog and Cat classes. When
an Animal reference variable points to a Dog object, the sound() method of the Dog class
is invoked. Similarly, when the same reference points to a Cat object, the sound() method
of the Cat class is invoked. This behavior demonstrates runtime polymorphism, where the
method call is resolved based on the actual object type at runtime.

 Dynamic Method Dispatch

Dynamic method dispatch is the mechanism by which a call to an overridden method is
resolved at runtime rather than compile-time. It is the backbone of runtime polymorphism
in Java. This mechanism allows Java to achieve runtime polymorphism by determining
the appropriate method to execute based on the actual object type that the reference
variable is pointing to and complete idea is described in Figure 8.3.

 Fig 7.3 Dynamic Dispatch Method for Animal -Dog Relation

Example of Dynamic Method Dispatch:
class Animal {
 void sound() {
 System.out.println("Animal sound");
 }
}

OOP with Java 7.9 Polymorphism

class Dog extends Animal {
 @Override
 void sound() {
 System.out.println("Dog barks");
 }
}

class TestDispatch {
 public static void main(String[] args) {
 Animal myAnimal = new Dog(); // Reference type is Animal, but object is Dog
 myAnimal.sound(); // Outputs: Dog barks
 }
}

Here, although the reference variable myAnimal is of type Animal, the actual object is of
type Dog. At runtime, the JVM determines that the sound() method of the Dog class
should be called, not the Animal class’s method. This is dynamic method dispatch in
action.

Advantages of Runtime Polymorphism

1. Flexibility and Extensibility: Allows a program to choose the appropriate method
at runtime based on the actual object, making it easier to extend and maintain.

2. Code Reusability: Common code can be written in the superclass, and specific
behavior can be provided in subclasses, promoting reuse and reducing
redundancy.

3. Design Patterns and Frameworks: Runtime polymorphism is fundamental to many
design patterns and frameworks, enabling features like dependency injection and
event handling.

Disadvantages of Runtime Polymorphism

1. Performance Overhead: Since method resolution occurs at runtime, there may be a
slight performance overhead compared to compile-time polymorphism.

2. Complexity in Debugging: Debugging issues related to runtime polymorphism
can be more challenging due to the dynamic nature of method invocation.

Runtime polymorphism in Java allows methods to behave differently based on the actual
object at runtime. It is primarily achieved through method overriding and dynamic
method dispatch, enabling flexible and extensible code. While it offers significant
benefits in terms of maintainability and design, it also introduces some performance
overhead and complexity. Understanding and effectively utilizing runtime polymorphism
is essential for writing robust and scalable Java applications.

 Centre for Distance Education 7.10 Acharya Nagarjuna University

 Interface Animal: This interface declares a single method, makeSound(), which will

be implemented by various classes.

 Classes Dog, Cat, and Cow: These classes implement the Animal interface,

providing their own version of the makeSound() method.

 Polymorphism in Action: In the Main class, the reference myAnimal is of type

Animal (the interface). This reference is then pointed to different objects (Dog, Cat,

and Cow). Even though the reference type is Animal, the method that gets called is

determined by the actual object type that myAnimal refers to at runtime.

Benefits of Using Interfaces for Polymorphism

1. Flexibility: Interfaces allow different classes to implement the same set of

methods, enabling flexible and extensible designs. You can add new

implementations without modifying existing code.

2. Decoupling: Using interfaces helps decouple code, meaning that the code using

the interface doesn't need to know about the concrete classes that implement the

interface.

3. Interchangeability: Objects of different classes can be treated as objects of a

common interface type, allowing them to be used interchangeably.

Real-World Example

Consider a payment system where different payment methods (e.g., CreditCard, PayPal,

BankTransfer) implement a common Payment interface. The Payment interface might

declare a method processPayment(), and each payment method class would provide its

own implementation. This way, the system can process different types of payments

without knowing the specifics of each payment method, achieving polymorphism.

interface Payment {

 void processPayment(double amount);

}

class CreditCard implements Payment {

 public void processPayment(double amount) {

OOP with Java 7.11 Polymorphism

 System.out.println("Processing credit card payment of $" + amount);

 }

}

class PayPal implements Payment {

 public void processPayment(double amount) {

 System.out.println("Processing PayPal payment of $" + amount);

 }

}

class BankTransfer implements Payment {

 public void processPayment(double amount) {

 System.out.println("Processing bank transfer of $" + amount);

 }

}

public class PaymentProcessor {

 public void process(Payment payment, double amount) {

 payment.processPayment(amount);

 }

 public static void main(String[] args) {

 PaymentProcessor processor = new PaymentProcessor();

 Payment creditCard = new CreditCard();

 Payment payPal = new PayPal();

 Payment bankTransfer = new BankTransfer();

 processor.process(creditCard, 100.0);

 processor.process(payPal, 200.0);

 processor.process(bankTransfer, 300.0);

 }

}

In this example, the PaymentProcessor can process any payment method that implements

the Payment interface, demonstrating the power of polymorphism through interfaces.

By leveraging interfaces, you can design systems that are modular, easy to maintain, and

adaptable to change.

 Centre for Distance Education 7.12 Acharya Nagarjuna University

7.5 POLYMORPHISM WITH INTERFACES

Polymorphism is a fundamental concept in object-oriented programming (OOP) that

allows objects to be treated as instances of their parent class or interface. In Java,

polymorphism can be achieved in several ways, one of which is through interfaces.

Understanding Polymorphism with Interfaces

 What is an Interface?

An interface in Java is a reference type, similar to a class, that can contain only constants,

method signatures, default methods, static methods, and nested types. Interfaces cannot

contain instance fields, constructors, or method implementations (other than default

methods). A class or another interface can implement an interface.

 Polymorphism through Interfaces

When a class implements an interface, it agrees to perform the specific behaviors defined

by the interface. Polymorphism is achieved because a single action can behave differently

based on the object that implements the interface.

Example: Polymorphism using Interfaces

Consider the following example where polymorphism is demonstrated using an interface.

// Define an interface

interface Animal {

 void makeSound();

}

// Implement the interface in different classes

class Dog implements Animal {

 public void makeSound() {

 System.out.println("Woof");

 }

}

class Cat implements Animal {

 public void makeSound() {

 System.out.println("Meow");

 }

}

class Cow implements Animal {

 public void makeSound() {

 System.out.println("Moo");

OOP with Java 7.13 Polymorphism

 }

}

// Demonstrate polymorphism with interfaces

public class Main {

 public static void main(String[] args) {

 // Declare an interface type reference

 Animal myAnimal;

 // Point the reference to different objects

 myAnimal = new Dog();

 myAnimal.makeSound(); // Outputs: Woof

 myAnimal = new Cat();

 myAnimal.makeSound(); // Outputs: Meow

 myAnimal = new Cow();

 myAnimal.makeSound(); // Outputs: Moo

 }

}

7.6 POLYMORPHISM AND ABSTRACT CLASSES

Polymorphism is one of the core principles of object-oriented programming (OOP), and it

allows objects to be treated as instances of their parent class or interface, rather than their

actual derived class. In Java, polymorphism can also be achieved through abstract classes.

Understanding Polymorphism with Abstract Classes is shown in Figure 8.4

Fig 7.4. Interface and Abstract class implementation

 Centre for Distance Education 7.14 Acharya Nagarjuna University

What is an Abstract Class?

An abstract class in Java is a class that cannot be instantiated on its own and is intended to

be subclassed. It can contain abstract methods (methods without a body) as well as

concrete methods (methods with a body). Abstract classes are used to define a common

interface for a group of related classes while also allowing for some level of

implementation reuse.

 Polymorphism through Abstract Classes

When a class inherits from an abstract class and provides implementations for the abstract

methods, polymorphism is achieved because the base type (the abstract class) can be used

to reference objects of the derived types.

Example: Polymorphism using Abstract Classes

Consider the following example to understand how polymorphism works with abstract

classes:

// Define an abstract class

abstract class Animal {

 // Abstract method (does not have a body)

 abstract void makeNoise();

 // Concrete method

 void eat() {

 System.out.println("This animal is eating.");

 }

}

// Subclasses provide implementations for the abstract method

class Dog extends Animal {

 @Override

 void makeNoise () {

 System.out.println("Woof");

 }

}

class Cat extends Animal {

 @Override

 void makeNoise () {

OOP with Java 7.15 Polymorphism

 System.out.println("Meow");

 }

}

class Cow extends Animal {

 @Override

 void makeNoise () {

 System.out.println("Moo");

 }

}

// Demonstrate polymorphism with abstract classes

public class Main {

 public static void main(String[] args) {

 // Declare an abstract class type reference

 Animal myAnimal;

 // Point the reference to different objects

 myAnimal = new Dog();

 myAnimal. makeNoise (); // Outputs: Woof

 myAnimal.eat(); // Outputs: This animal is eating.

 myAnimal = new Cat();

 myAnimal. makeNoise (); // Outputs: Meow

 myAnimal.eat(); // Outputs: This animal is eating.

 myAnimal = new Cow();

 myAnimal. makeNoise (); // Outputs: Moo

 myAnimal.eat(); // Outputs: This animal is eating.

 }

}

 Abstract Class Animal: This abstract class contains one abstract method,

makeSound(), and one concrete method, eat(). The makeSound() method must be

implemented by any subclass of Animal.

 Classes Dog, Cat, and Cow: These classes extend the Animal class and provide

specific implementations for the makeSound() method.

 Polymorphism in Action: In the Main class, the reference myAnimal is of type

Animal (the abstract class). This reference can be assigned to any subclass object

 Centre for Distance Education 7.16 Acharya Nagarjuna University

(Dog, Cat, or Cow). The method makeSound() called on myAnimal is determined by

the actual object type that myAnimal refers to at runtime.

Benefits of Using Abstract Classes for Polymorphism

1. Shared Code and Reusability: Abstract classes allow for code reuse by

providing a base implementation for some methods while forcing subclasses to

implement the abstract methods.

2. Flexibility with Common Behavior: Abstract classes can define common

behavior (in concrete methods) that all subclasses should share, while allowing

subclasses to override or provide their unique implementation of other behaviors.

3. Ease of Extension: New classes can be easily added to the system by extending

the abstract class and providing specific implementations for abstract methods.

Fig 7.5 Benefits of Using Abstract Classes for Polymorphism

Real-World Example

Consider a shape system where different shapes (e.g., Circle, Rectangle, Triangle) inherit

from an abstract class Shape. The Shape class might declare an abstract method draw()

that each subclass must implement.

abstract class Shape {

 abstract void draw();

OOP with Java 7.17 Polymorphism

 void moveTo(int x, int y) {

 System.out.println("Moving to x: " + x + ", y: " + y);

 }

}

class Circle extends Shape {

 void draw() {

 System.out.println("Drawing a Circle");

 }

}

class Rectangle extends Shape {

 void draw() {

 System.out.println("Drawing a Rectangle");

 }

}

class Triangle extends Shape {

 void draw() {

 System.out.println("Drawing a Triangle");

 }

}

public class ShapeDemo {

 public static void main(String[] args) {

 Shape myShape;

 myShape = new Circle();

 myShape.draw(); // Outputs: Drawing a Circle

 myShape.moveTo(5, 10); // Outputs: Moving to x: 5, y: 10

 myShape = new Rectangle();

 myShape.draw(); // Outputs: Drawing a Rectangle

 myShape.moveTo(15, 20); // Outputs: Moving to x: 15, y: 20

 myShape = new Triangle();

 Centre for Distance Education 7.18 Acharya Nagarjuna University

 myShape.draw(); // Outputs: Drawing a Triangle

 myShape.moveTo(25, 30); // Outputs: Moving to x: 25, y: 30

 }

}

In this example, the Shape abstract class provides a common interface and some shared

functionality (moveTo method), while specific shapes like Circle, Rectangle, and

Triangle provide their own implementation of the draw() method. The abstract class

enables polymorphism, allowing the Shape reference to be used interchangeably for any

shape subclass.

Key Points

 Abstract classes are useful when you have a base class that should not be

instantiated and should define a common interface for its subclasses.

 Polymorphism allows for dynamic method dispatch, where the method that gets

executed is determined at runtime based on the actual object's type, not the

reference's type.

 Abstract classes can have both abstract methods (which must be implemented by

subclasses) and concrete methods (which can be shared across all subclasses).

Using abstract classes for polymorphism is a powerful tool in Java, especially when you

need to define a common behavior across multiple classes while still allowing each class

to provide its unique implementation.

 8.7 Advantages and Disadvantages of Polymorphism

8.7.1 Advantages

o Flexibility: Easier to introduce new implementations.

o Code Reusability: Reduces code duplication.

o Ease of Maintenance: Changes in code are localized.

8.7.2 Disadvantages

o Complexity: Can introduce complexity and make debugging harder.

o Performance: Dynamic method dispatch can have a slight performance

overhead.

7.8 Common Mistakes and Best Practices

8.1 Common Mistakes

o Confusing method overloading with overriding.

OOP with Java 7.19 Polymorphism

o Misusing polymorphism, leading to overly complex hierarchies.

8.2 Best Practices

o Favor composition over inheritance where possible.

o Keep class hierarchies shallow.

o Use @Override annotations to avoid accidental overloading.

7.9 SUMMARY

Polymorphism is a fundamental concept in Java's object-oriented programming that
enables objects to be treated as instances of their parent class or interface, allowing for
more flexible and scalable code. It allows a single interface or abstract class to be used for
a general class of actions, while specific behavior is determined by the actual subclass or
implementation at runtime. This is achieved through method overriding in subclasses or
through the implementation of interfaces. Polymorphism promotes code reusability,
modularity, and makes it easier to manage and extend applications. By utilizing
polymorphism, developers can design systems that are more adaptable to change,
maintainable, and robust, as it decouples the code that uses the polymorphic objects from
the specific implementation details of those objects.

7.10 TECHNICAL TERMS

 Polymorphism

 Abstract Class

 Interface

 Compile Time

 Run Time

 Overriding

7.11 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Discuss how compile-time polymorphism (method overloading) and runtime
polymorphism (method overriding) are implemented in Java.

2. Compare and contrast the use of interfaces and abstract classes in achieving
polymorphism in Java.

3. How does method overriding affect exception handling, particularly with checked
and unchecked exceptions?

 Centre for Distance Education 7.20 Acharya Nagarjuna University

 Short questions:
1. What is Polymorphism in Java?
2. How is Polymorphism Achieved in Java?
3. What is the Difference Between Overloading and Overriding in the Context

of Polymorphism?
4. How Does Polymorphism Work with Interfaces and Abstract Classes?
5. What are the Advantages and Disadvantages of Polymorphism?

7.12 SUGGESTED READINGS

1. "Java: The Complete Reference" by Herbert Schildt, 12th Edition (2021),

McGraw-Hill Education

2. "Head First Java" by Kathy Sierra and Bert Bates, 2nd Edition (2005),O'Reilly

Media

3. "Effective Java" by Joshua Bloch,3rd Edition (2018),Addison-Wesley

Professional

AUTHOR: Dr. U.Surya Kameswari

LESSON- 8

 INTERFACES

OBJECTIVES:

After going through this lesson, you will be able to

 Learn the syntax for defining an interface using the interface keyword.

 Understand the purpose of abstract methods, default methods, and static methods in

interfaces.

 Compare interfaces and abstract classes in terms of usage, capabilities, and

limitations.

 Understand how classes use the implements keyword to provide concrete

implementations of interface methods.

 Understand how interfaces can extend other interfaces using the extends keyword.

STRUCTURE OF THE LESSION:

8.1 Introduction

8.2 Abstract Method

8.3 Java Interface

8.4 Interfaces Vs Abstract Classes

8.5 Implementing Multiple Interfaces

8.6 Extending Multiple Interfaces

8.7 Summary

8.8 Technical Terms

8.9 Self-Assessment Questions

8.10 Further Readings

Centre for Distance Education 8.2 Acharya Nagarjuna University

8.1 INTRODUCTION

In Java, interfaces play a crucial role in object-oriented programming by providing a
mechanism to define a contract that classes must adhere to, ensuring abstraction and
flexibility. Unlike abstract classes, which allow partial implementation with concrete
methods, interfaces focus purely on the "what" rather than the "how," defining method
signatures without implementation (except for default and static methods introduced in Java
8). Interfaces also differ from abstract classes in that they support multiple inheritance,
allowing a class to implement multiple interfaces simultaneously, which is not possible with
classes extending an abstract class. This distinction makes interfaces ideal for scenarios
where a common behavior or functionality must be enforced across unrelated classes.

The chapter further explores the practical aspects of interfaces, starting with their definition
using the interface keyword. It delves into how classes implement interfaces, ensuring all
abstract methods are defined, and how interfaces can be extended to create more specific
contracts. Accessing implementations through interface references highlights the power of
polymorphism, enabling the use of different implementations interchangeably, promoting
loose coupling and scalability. By understanding these topics, developers can harness
interfaces to design modular, reusable, and maintainable code, a fundamental aspect of
modern Java development.

8.2 ABSTRACT METHOD

An abstract method in Java is a method declared without an implementation (no method
body). It acts as a placeholder that must be implemented by subclasses. Abstract methods are
commonly used in abstract classes or interfaces to define behaviors that derived classes must
provide.

An abstract method can be declared in an abstract class, which itself cannot be instantiated.

 public abstract void display(); // Abstract method

Abstract methods must be implemented by subclasses (for abstract classes) or implementing
classes (for interfaces). Abstract methods cannot be static, final, or private, as these modifiers
prevent overriding, which defeats the purpose of abstraction.

An abstract method can be declared in an abstract class, which itself cannot be instantiated.

// Abstract class with an abstract method

public abstract class Shape {

 // Abstract method

 public abstract void draw();

 // Concrete method

OOP with Java 8.3 Interfaces

 public void description() {

 System.out.println("This is a shape.");

 }

}

// Subclass providing implementation

public class Circle extends Shape {

 @Override

 public void draw() {

 System.out.println("Drawing a Circle");

 }

}

public class Main {

 public static void main(String[] args) {

 Shape shape = new Circle(); // Polymorphism

 shape.draw(); // Calls Circle's implementation

 shape.description(); // Calls concrete method

 }

}

 Table 8.1 Abstract Methods vs. Concrete Methods
Feature Abstract Methods Concrete Methods

Definition Declared without implementation
(abstract).

Fully defined with a
method body.

Location Found in abstract classes or
interfaces.

Found in regular or
abstract classes.

Implementation
Requirement

Must be implemented by subclasses
or implementing classes.

Already implemented; can
be overridden.

Modifiers Cannot be static, final, or private. Can use any valid method
modifiers.

Centre for Distance Education 8.4 Acharya Nagarjuna University

8.3 JAVA INTERFACE

An interface in Java is a reference type that defines a contract or blueprint for classes to
implement. It specifies a set of abstract methods (without implementations) that
implementing classes must provide. Interfaces are fundamental to achieving abstraction,
polymorphism, and multiple inheritance in Java.

 Creating an Interface

Creating an interface in Java involves defining a blueprint for classes that will implement the
interface. An interface specifies a set of methods that the implementing class must provide.
Interfaces are declared using the interface keyword and can include abstract methods,
constants, default methods, and static methods (Java 8+).

public interface Animal {
 // Abstract method
 void sound();
 // Constant (implicitly public static final)
 int LEGS = 4;
 // Default method
 default void sleep() {
 System.out.println("Sleeping...");
 }
 // Static method (Java 8+)
 static void info() {
 System.out.println("Animals are diverse.");
 }

 }

 Use the implements keyword.

 Provide concrete implementations for all abstract methods in the interface.

public class Dog implements Animal {

 @Override

 public void sound() {

 System.out.println("Bark");

 }

}

An interface reference to hold an object of a class that implements it. This promotes
polymorphism.

public class Main {

OOP with Java 8.5 Interfaces

 public static void main(String[] args) {

 Animal myDog = new Dog(); // Interface reference

 myDog.sound(); // Calls Dog's implementation

 myDog.sleep(); // Calls default method

 Animal.info(); // Calls static method

 }

}

8.4 INTERFACES Vs ABSTRACT CLASSES

Both interfaces and abstract classes are used to achieve abstraction in Java. However, they
have distinct features, purposes, and use cases.

Table 8.2 Key Differences Between Interfaces and Abstract Classes

Aspect Interface Abstract Class

Purpose
Provides a contract that implementing

classes must follow.

Serves as a base class with partial
implementation for common

functionality.

Keyword
Declared using the interface

keyword.
Declared using the abstract keyword.

Method
Implementation

All methods were abstract (until Java
8). Java 8+ allows default and static

methods.

Can have both abstract and concrete
methods.

Field Modifiers
Fields are implicitly public static

final (constants).
Fields can have any access modifier
and may include instance variables.

Constructor Cannot have constructors.
Can have constructors to initialize

fields or perform tasks.

Inheritance
Supports multiple inheritance (a class
can implement multiple interfaces).

Does not support multiple inheritance
(a class can extend only one abstract

class).

Access Modifiers
for Methods

Methods are implicitly public (cannot
be private or protected).

Methods can have any access modifier
(e.g., public, protected, private).

Static Context
Can include static methods (Java 8+)

but no static blocks.
Can include static methods, static

blocks, and static fields.

Use Case
Used to define a set of rules or

behaviors across unrelated classes.
Used as a base for related classes with

shared code and structure.

Centre for Distance Education 8.6 Acharya Nagarjuna University

Similarities Between Interfaces and Abstract Classes

1. Both cannot be instantiated directly.

2. Both can enforce a set of methods for derived classes to implement.

3. Both support polymorphism and abstraction.

Use interfaces when designing a system with unrelated classes that share common behaviors
or need multiple inheritance.

Use abstract classes when creating a base class for a group of related classes with shared code
and structure.

8.5 IMPLEMENTING MULTIPLE INTERFACES

Java supports multiple inheritance through interfaces. A class can implement multiple
interfaces by separating them with commas.

public interface Flyable {

 void fly();

}

public interface Swimmable {

 void swim();

}

public class Duck implements Flyable, Swimmable {

 @Override

 public void fly() {

 System.out.println("Duck is flying");

 }

 @Override

 public void swim() {

 System.out.println("Duck is swimming");

 }

}

public class Main {

OOP with Java 8.7 Interfaces

 public static void main(String[] args) {

 Duck duck = new Duck();

 duck.fly();

 duck.swim();

 }

}

Key Features When Implementing Interfaces

 Overriding Methods:

o The class must use the @Override annotation when providing implementations for
interface methods.

o All interface methods are implicitly public, so implementations must also be
public.

 Polymorphism with Interfaces:

o Interfaces enable polymorphism, where multiple classes can be accessed through a
single interface type.

public class Fish implements Swimmable {

 @Override

 public void swim() {

 System.out.println("Fish is swimming");

 }

}

Swimmable swimmable = new Fish(); // Polymorphic behavior

swimmable.swim();

 Default and Static Methods (Java 8+):

o Default methods in an interface can be inherited without overriding unless
customization is needed.

o Static methods are accessed directly through the interface.

public interface Vehicle {

Centre for Distance Education 8.8 Acharya Nagarjuna University

 default void start() {

 System.out.println("Vehicle starting...");

 }

 static void info() {

 System.out.println("Vehicle interface");

 }

}

public class Car implements Vehicle {}

public class Main {

 public static void main(String[] args) {

 Car car = new Car();

 car.start(); // Calls default method

 Vehicle.info(); // Calls static method

 }

}

Advantages of Implementing Interfaces

 Achieves Multiple Inheritance:

o A class can implement multiple interfaces, allowing flexibility in design.

 Promotes Polymorphism:

o Objects can be accessed through their interface type, enabling flexible code
reuse.

 Enforces a Contract:

o Ensures that all implementing classes follow the specified behavior.

 Supports Loose Coupling:

o Code can interact with interface types rather than specific implementations.

OOP with Java 8.9 Interfaces

Implementing interfaces in Java is a powerful way to enforce abstraction and flexibility. It
allows you to design modular, reusable, and maintainable code by defining behaviors that
multiple classes can share while retaining their individuality.

In Java, interfaces can extend other interfaces, similar to how classes can inherit from other
classes. When an interface extends another interface, it inherits all the methods and constants
of the parent interface. The child interface can also declare additional methods. This allows
for the creation of more specific interfaces while maintaining a logical hierarchy.

8.6 EXTENDING MULTIPLE INTERFACES

An interface can extend multiple interfaces, allowing for a combination of behaviors. This is
Java's way of supporting multiple inheritance for interfaces.

Example:

public interface Flyable {

 void fly();

}

public interface Swimmable {

 void swim();

}

public interface Amphibious extends Flyable, Swimmable {

 void liveOnLand();

}

 Implementing Class:

public class Duck implements Amphibious {

 @Override

 public void fly() {

 System.out.println("Duck is flying");

 }

 @Override

 public void swim() {

 System.out.println("Duck is swimming");

Centre for Distance Education 8.10 Acharya Nagarjuna University

 }

 @Override

 public void liveOnLand() {

 System.out.println("Duck can live on land");

 }

}

public class Main {

 public static void main(String[] args) {

 Amphibious duck = new Duck();

 duck.fly(); // Output: Duck is flying

 duck.swim(); // Output: Duck is swimming

 duck.liveOnLand(); // Output: Duck can live on land

 }

}

 Inheritance of Methods:

o A child interface inherits all the abstract methods and constants from its parent
interfaces.

o Implementing classes must implement all inherited methods.

 Multiple Inheritance:

o An interface can extend multiple interfaces, which helps combine multiple
behaviors.

o Syntax:

public interface InterfaceC extends InterfaceA, InterfaceB {

 void methodC();

 }

 Default and Static Methods:

o Default and static methods introduced in Java 8 can also be inherited or
overridden when extending interfaces.

OOP with Java 8.11 Interfaces

public interface ParentInterface {

 default void greet() {

 System.out.println("Hello from ParentInterface");

 }

}

public interface ChildInterface extends ParentInterface {

 @Override

 default void greet() {

 System.out.println("Hello from ChildInterface");

 }

}

 Hierarchical Design:

o Extending interfaces promotes logical and organized design by defining broad
behaviors in parent interfaces and more specific behaviors in child interfaces.

Advantages of Extending Interfaces

 Reusability:

o Common functionality can be defined in the parent interface and reused by
multiple child interfaces.

 Scalability:

o New features or behaviors can be added without modifying existing interfaces
or classes.

 Multiple Inheritance:

o Combines capabilities from multiple parent interfaces, overcoming the single
inheritance limitation of classes.

Extending interfaces in Java provides a way to build hierarchies and modularize behavior. It
allows for code reusability, scalability, and logical separation of responsibilities, making it a
powerful tool in designing maintainable and extensible applications.

8.7 SUMMARY

In conclusion, interfaces in Java play a critical role in defining contracts for classes to follow,
allowing for a high level of abstraction and flexibility in object-oriented design. Unlike

Centre for Distance Education 8.12 Acharya Nagarjuna University

abstract classes, interfaces cannot provide method implementations (except for default and
static methods in Java 8 and beyond) and are primarily used to define a set of behaviors that
can be implemented by any class, regardless of its place in the class hierarchy. The key
advantage of interfaces over abstract classes lies in their ability to support multiple
inheritance, allowing a class to implement multiple interfaces, thus providing a way to
combine different behaviors. This contrasts with abstract classes, which are limited to single
inheritance and are more suited for situations where a common base implementation is
needed.

When implementing interfaces, a class must provide concrete implementations for all the
abstract methods declared in the interface, ensuring that the contract defined by the interface
is fully realized. Accessing implementations through interface references allows for
polymorphic behavior, where different objects can be treated uniformly as instances of the
same interface type. Additionally, interfaces can be extended, enabling the creation of more
specific interfaces by inheriting the methods of parent interfaces and adding new ones. This
hierarchical structure promotes modular, reusable, and scalable code, making interfaces a
fundamental concept for creating flexible and maintainable software in Java.

8.8 TECHNICAL TERMS

 Interface

 Abstract Class

 Abstract Method

 Contract

 Polymorphism

 Multiple Inheritance

 Implementing an Interface

 implements Keyword

 Method Implementation

 Interface Reference

 Dynamic Binding

 Default Method

 Static Method

 extends Keyword

 Extending Interfaces

OOP with Java 8.13 Interfaces

8.9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. What are the Key Differences Between Interfaces and Abstract Classes in Java?

Discuss When to Use Each One with Suitable Examples.

2. How Are Interfaces Defined in Java? Discuss the Structure of an Interface and

the Types of Methods it Can Contain. Provide Examples of Different Types of

Methods within an Interface.

3. What is the Process of Implementing an Interface in Java? Explain the Steps

Involved and the Rules That Must Be Followed. Include Examples to Illustrate

the Implementation Process.

4. Explain How Accessing Implementations Through Interface References Works

in Java. Discuss the Concept of Polymorphism and How It Enables Flexibility in

Code Design. Provide Practical Examples.

Short Answer Questions:

1. How do you define an interface in Java?\

2. What is the role of the implements keyword in Java?

3. Can an interface reference be used to access objects of multiple classes? Explain.

4. What does it mean to extend an interface in Java?

8.10 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,

McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,

Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,

2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,

2014

AUTHOR: Dr. U. Surya Kameswari

LESSON- 9

PACKAGES

OBJECTIVES:

After going through this lesson, you will be able to

 Describe the role of packages in organizing and managing classes and interfac

 Distinguish between built-in packages and user-defined packages.

 Write the syntax for declaring a package and explain the naming conventions for

packages.

 Describe how to run Java programs that include classes from user-defined packages.

 Explain how packages and sub-packages help in avoiding naming conflicts

STRUCTURE OF THE LESSION:

9.1 Java package

9.2 Types of packages

9.3 Creating and running a package

9.4 Compiling and running packages

9.5 Accessing a package

9.6 Sub package

9.7 Summary

9.8 Technical Terms

9.9 Self-Assessment Questions

9.10 Further Readings

Centre for Distance Education 9.2 Acharya Nagarjuna University

9.1 JAVA PACKAGE

Packages in Java are a mechanism to group related classes, interfaces, and sub-packages
together. This helps in organizing files within a project, avoiding naming conflicts, and
controlling access to classes and interfaces. A package acts like a folder in a file system and
can contain classes, interfaces, sub-packages, and other packages.

9.1.1 Key Benefits of Using Packages

1. Namespace Management: Packages prevent naming conflicts by differentiating classes and
interfaces with the same name but in different packages.

2. Access Protection: Packages allow control over the accessibility of classes and interfaces.
Members with default (package-private) access are accessible only within their own package.

3. Code Organization and Modularity: Packages help in organizing classes logically, making
code easier to manage, maintain, and understand.

4. Reusability: By grouping related classes and interfaces, packages promote reusability of
code across different projects.

9.2 TYPES OF PACKAGES

Java provides two main types of packages:

1. Built-in Packages: These are pre-defined packages that come with the Java Standard
Library. Examples include ‘java.lang’, ‘java.util’, ‘java.io’, and ‘java.awt’.

2. User-defined Packages: These are custom packages created by the programmer to group
related classes and interfaces based on the functionality of the application.

9.2.1 Built-in Packages

Built-in packages provide a large set of reusable classes for various functionalities:

- ‘java.lang’: Contains fundamental classes such as ‘String’, ‘System’, and ‘Math’. This
package is automatically imported by the compiler for every Java program.

 - ‘java.util’: Provides utility classes like ‘ArrayList’, ‘HashMap’, ‘Date’, and many others
for data structure management, date manipulation, and more.

 - ‘java.io’: Contains classes for input and output operations, such as ‘File’, ‘FileReader’,
‘BufferedReader’, and ‘PrintWriter’.

 - ‘java.awt’: Includes classes for building graphical user interface (GUI) components, like
‘Button’, ‘Frame’, and ‘Canvas’.

OOP with Java 9.3 Packages

Figure 9.1 built in packages

9.2.2 User-defined Packages

User-defined packages are created by developers to encapsulate their classes and interfaces.
This is especially useful for larger projects where different modules may need to be
developed and maintained separately.

9.3 CREATING AND ACCESSING A PACKAGE

9.3.1 Creating a Package

To create a package in Java, you need to declare the package name at the very top of your
Java source file, before any ‘import’ statements or class definitions.

Syntax:

package packageName;

Example:

// File: MyPack/Car.java

package MyPack;

public class Car {

 public void display() {

 System.out.println("This is a car.");

 }

}

Centre for Distance Education 9.4 Acharya Nagarjuna University

In this example, we create a package named ‘‘MyPack’ and define a ‘Car’ class inside it.

9.3.2 Steps to Create a Package:

1. Choose a Package Name: The package name should be unique to avoid conflicts and
should follow the naming conventions (usually lowercase and reflective of the functionality
or company domain).

2. Declare the Package: At the top of your Java file, use the ‘package’ keyword followed by
the package name.

3. Save the File: Save the Java file in a directory structure that matches the package name.
For example, ‘‘MyPack.Car’ should be saved in a directory named ‘‘MyPack’.

9.4 COMPILING AND RUNNING THE PACKAGE

To compile the class inside the package, navigate to the source directory and use the ‘javac’
command with the full path to the file.

If you are not using any IDE, you need to follow the syntax given below:

 javac -d directory javafilename

For example

 javac -d . package/javafile.java

 The -d switch specifies the destination where to put the generated class file.

 We can use any directory If you want to keep the package within the same directory,
you can use . (dot).

javac -d . Mypack/Car.java

To run a class from a package, use the ‘java’ command with the fully qualified class name
(including the package name).

Example:

java MyPack.Car

We need to use fully qualified name e.g. mypack.Simple etc to run the class.

 To Compile: javac -d . Car.java

 To Run: java mypack.Car

 Output: This is a Car

 The -d is a switch that tells the compiler where to put the class file i.e. it represents
destination. The • (dot)represents the current folder.

OOP with Java 9.5 Packages

9.5 ACCESSING A PACKAGE

There are three ways to access the package from outside the package.

 Import package.*;

 import package.classname;

 fully qualified name.

Figure 9.2 package accessing hierarchy

9.5.1 Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible but
not subpackages. The import keyword is used to make the classes and interface of another
package accessible to the current package.

Program 1:

//save by A.java Javac –d . A.java

 package pack;

public class A

{

 public void msg()

 {

 System.out.println("Hello");

 }

}

Program 2:

//save by B.java

package mypack;

import pack.*;

class B

{

Centre for Distance Education 9.6 Acharya Nagarjuna University

 public static void main(String args[])

 {

 A obj = new A();

 obj.msg();

 }

}

Javac –d B.java

Java mypack.B

9.5.2 Using packagename.classname

If we import package.classname then only declared class of this package will be accessible.

//save by A.java

package pack;

public class A

{

 public void msg()

 {

 System.out.println("Hello");

 }

}

//save by B.java

package mypack;

import pack.A;

class B

{

 public static void main(String args[])

 {

 A obj = new A();

 obj.msg();

 }

}

9.5.3 Using fully qualified name

If you use fully qualified name then only declared class of this package will be accessible.
Now there is no need to import. But you need to use fully qualified name every time when
you are accessing the class or interface.

OOP with Java 9.7 Packages

It is generally used when two packages have same class name e.g. java.util and java.sql
packages contain Date class

//save by A.java

 package pack;

public class A

{

 public void msg()

 {

 System.out.println("Hello");

 }

}

//save by B.java

package mypack;

import pack.*;

 class B

{

 public static void main(String args[])

 {

 pack.A obj = new pack.A();

 obj.msg();

 }

}

Note: If you import a package, all the classes and interface of that package will be imported
excluding the classes and interfaces of the subpackages. Hence, you need to import the
subpackage as well.

9.6 SUB PACKAGE

A sub-package in Java is a package that is nested within another package. It is essentially a
package inside another package and helps in further organizing classes and interfaces in a
hierarchical manner.

Sub-packages allow developers to create a more structured organization of related classes and
interfaces by grouping them into a hierarchy of packages. This is useful in large projects
where grouping related functionalities together in a clear structure is important.

Sub-packages are named by adding another level to the existing package name, separated by
a dot ('.'). For example, if you have a main package named 'com.example', a sub-package
might be 'com.example.utils'.

In Java, sub-packages do not inherit access privileges from their parent packages. Each sub-
package is treated as an independent package, even though they are hierarchically related.

Centre for Distance Education 9.8 Acharya Nagarjuna University

This means that the classes and interfaces in a sub-package are not automatically accessible
to the parent package, unless explicitly imported.

9.6.1 Creating Sub-packages

To create a sub-package, you simply declare it by specifying the full package name at the
beginning of your Java source file. This includes the parent package and the sub-package.

Example:

Let's create a package 'com.example' with a sub-package 'com.example.utils'.

1. Main Package: 'com.example'

 // File: com/example/Car.java

 package com.example;

 public class Car {

 public void display() {

 System.out.println("This is a car from com.example package.");

 }

 }

 2. Sub-package: 'com.example.utils'

 // File: com/example/utils/Helper.java

 package com.example.utils;

 public class Helper {

 public void help() {

 System.out.println("Helper class in com.example.utils

package.");

 }

 }

 9.6.2 Compiling and Running Classes in Sub-packages

To compile classes that belong to a sub-package, you should maintain the directory structure
that reflects the package name.

Compilation:

javac com/example/Car.java

javac com/example/utils/Helper.java

Running:

To run a class from the sub-package, you need to provide the fully qualified class name:

OOP with Java 9.9 Packages

java com.example.Car

java com.example.utils.Helper

9.6.3 Accessing Sub-packages

To access a class or interface from a sub-package in another Java file, you need to import it
using the 'import' statement with the full package name.

Example:

import com.example.utils.Helper;

public class Main {

 public static void main(String[] args) {

 Helper helper = new Helper();

 helper.help(); // Output: Helper class in com.example.utils

package.

 }

}

Alternatively, you can use a wildcard to import all classes from the sub-package:

import com.example.utils.*;

public class Main {

 public static void main(String[] args) {

 Helper helper = new Helper();

 helper.help(); // Output: Helper class in com.example.utils

package.

 }

}

Figure 9.3 package accessing level

Centre for Distance Education 9.10 Acharya Nagarjuna University

Access Modifiers and Packages

Packages play a significant role in controlling access to classes and their

members:

1. Public: Classes or members declared as public are accessible from any

other class, even from different packages.

2. Protected: protected members are accessible within the same package

or by subclasses.

3. Default (Package-Private): If no access modifier is provided, the

member is only accessible within the same package.

4. Private: private members are only accessible within the same class.

Benefits of Using Packages

1. Namespace Management: Packages prevent class name conflicts by grouping related
classes together.

2. Access Control: Packages allow control over the accessibility of classes, interfaces,
and methods using access modifiers.

3. Code Organization: Large programs are easier to manage when organized into
packages, improving readability and maintainability.

4. Reusability: Classes and methods from other packages can be reused, promoting code
reuse.

5. Ease of Maintenance: Modular design enables faster debugging and easier updates.

Figure 9.4 Benefits of Using Packages

OOP with Java 9.11 Packages

9.7 SUMMARY

The chapter on Java packages introduces the concept of packages, which are used to
group related classes and interfaces to manage namespaces, promote modularity, and
enhance code organization. It covers the two main types of packages: built-in packages
provided by the Java Standard Library and user-defined packages created by developers
for custom use. The chapter explains how to create a package, compile and run classes
within it, and access classes from a package using the import statement. It also discusses
sub-packages, which are packages nested within other packages, allowing for a
hierarchical structure that further organizes code into logical groups. Through this, the
chapter emphasizes the importance of packages in maintaining clean and manageable
Java projects.

9.8 TECHNICAL TERMS

 Package,

 modularity,

 hierarchy

 sub package.

9.9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Describe the purpose of packages in Java . Illustate the types of packages with

examples.

2. Explain the steps involved in creating, compiling, and running a package in Java.

3. Discuss the concept of sub-packages in Java.

4. What are the different ways to access a class from a package in Java?

 Short Answer Questions:

1. What is a package in Java, and why is it important?

2. List two types of packages in Java and provide examples for each.

3. How do you create a package in Java? Explain with syntax.

4. Explain how to access a class from a package in another Java file.

9.10 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,

McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,

Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

Centre for Distance Education 9.12 Acharya Nagarjuna University

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,

2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,

2014

AUTHOR: Dr. Vasantha Rudramalla

LESSON- 10

 FILES

OBJECTIVES:

After going through this lesson, you will be able to

 Learn about the concept of streams in Java

 Understand the different constructors of FileOutputStream and FileInputStream and

their usage.

 Understand the use of different constructors of FileWriter for creating or appending to

files.

 Understand how to create and use FileReader to read character data from files.

 Apply the knowledge of stream classes to solve real-world file input and output

problems.

STRUCTURE OF THE LESSION:

10.1 Stream classes

10.2 Creating a File using File Output Stream

10.3 Reading Data from a File using File Input Stream

10.4 Creating a File using File Writer

10.5 Reading a File using File Reader

10.6 Binary Input and Output In Java

10.7 Random Access Operations

10.8 Summary

10.9 Technical Terms

10.10 Self-Assessment Questions

10.11 Further Readings

Centre for Distance Education 10.2 Acharya Nagarjuna University

10.1 STREAM CLASSES

Java streams provide a way to handle input and output operations (I/O) in Java. They enable
reading data from a source or writing data to a destination in a sequential manner.

All the programming languages provide support for standard I/O where user's program can
take input from a keyboard and then produce output on the computer screen. If you are aware
if C or C++ programming languages, then you must be aware of three standard devices
STDIN, STDOUT and STDERR. Similar way Java provides following three standard streams

• Standard Input: This is used to feed the data to user's program and usually a
keyboard is used as standard input stream and represented as System.in.

• Standard Output: This is used to output the data produced by the user's program and
usually a computer screen is used to standard output stream and represented as
System.out.

• Standard Error: This is used to output the error data produced by the user's program
and usually a computer screen is used to standard error stream and represented as
System.err.

No matter where the data is coming from or going to and no matter what its type, the
algorithms for sequentially reading and writing data are basically the same

Figure 10.1 read stream

Figure 10.2 Write stream

Java provides two primary types of streams:

1. Byte Streams: Used for reading and writing binary data (8-bit bytes).
2. Character Streams: Used for reading and writing text data (16-bit Unicode characters).

Source ii nn ff oo rr mm aa tt ii oo nn Program

Stream

reads

Dest. ii nn ff oo rr mm aa tt ii oo nn Program

Stream

 writes

OOP with Java 10.3 Files

10.1.1 Byte Streams

A byte stream in Java is a type of stream used to perform input and output operations of raw
binary data, which is represented in 8-bit bytes. Byte streams are primarily used for reading
and writing binary data, such as images, audio files, and other non-text data types. They are
part of Java's I/O (Input/Output) system, which is used to handle data streams for reading and
writing data to and from files, network connections, or other input/output sources.

Features of Byte Streams

 Handles Raw Binary Data: Byte streams are designed to handle raw binary data,
which makes them suitable for files and data sources that are not in a human-readable
text format.

 8-Bit Bytes: Byte streams operate on 8-bit bytes, which means they process data one
byte at a time. This is ideal for data that is already in byte format or needs to be
processed at the byte level.

 Unbuffered and Buffered Streams: Byte streams come in both unbuffered and
buffered variants. Unbuffered streams handle each byte individually, while buffered
streams use an internal buffer to optimize read and write operations by reducing the
number of native I/O calls.

 Used for Binary Files: Byte streams are commonly used to read and write binary
files like images, audio files, and serialized objects, where precise control over the
binary format is required.

Java provides several classes for handling byte streams, but the most commonly used are:

InputStream: The base class for all byte input streams in Java. It defines methods for
reading bytes from a source.

OutputStream: The base class for all byte output streams in Java. It defines methods for
writing bytes to a destination.

Some of the specific subclasses of InputStream and OutputStream include:

FileInputStream: A subclass of InputStream used for reading bytes from a file.

FileOutputStream: A subclass of OutputStream used for writing bytes to a file.

BufferedInputStream: A subclass of InputStream that adds buffering to improve reading
performance by reducing the number of native I/O operations.

BufferedOutputStream: A subclass of OutputStream that adds buffering to improve
writing performance by reducing the number of native I/O operations.

Centre for Distance Education 10.4 Acharya Nagarjuna University

Figure 10.3 input stream class hierarchy

Figure 10. 4 outputstream class hierarchy

10.1.2 Character Streams

A character stream in Java is a type of stream used to handle input and output operations of
character data. Character streams are designed to work with data in a human-readable text
format, such as Unicode characters. These streams are ideal for processing text files or any
data source where the input and output are in character form rather than raw binary data.

Features of Character Streams

 Handles Character Data: Character streams work with 16-bit Unicode characters,
making them suitable for reading and writing text data. This includes letters, digits,
and other textual symbols.

 Automatic Character Encoding and Decoding: Character streams automatically
handle character encoding and decoding, making it easier to work with text files in
different languages and character sets.

OOP with Java 10.5 Files

 Buffered and Unbuffered Streams: Similar to byte streams, character streams also
come in buffered and unbuffered variants. Buffered streams provide higher
performance by minimizing the number of I/O operations through the use of an
internal buffer.

 Suitable for Text Files: Character streams are commonly used for reading from and
writing to text files, where the data is encoded in character format rather than binary.

Character Stream Classes in Java

Java provides several classes for handling character streams. The two main abstract base
classes for character streams are:

Reader: The base class for all character input streams in Java. It defines methods for reading
character data.

Writer: The base class for all character output streams in Java. It defines methods for writing
character data.

Some of the specific subclasses of Reader and Writer include:

FileReader: A subclass of Reader used for reading characters from a file.

FileWriter: A subclass of Writer used for writing characters to a file.

BufferedReader: A subclass of Reader that adds buffering to improve reading performance
by reducing the number of native I/O operations.

BufferedWriter: A subclass of Writer that adds buffering to improve writing performance
by reducing the number of native I/O operations.

InputStreamReader: A bridge from byte streams to character streams; reads bytes and
decodes them into characters using a specified charset.

OutputStreamWriter: A bridge from character streams to byte streams; encodes characters
into bytes using a specified charset.

Figure 10.6 Readerr class stream hierarchy

Centre for Distance Education 10.6 Acharya Nagarjuna University

Figure 10.6 Writer class stream hierarchy

10.2 CREATING A FILE USING FILE OUTPUT STREAM

Creating a file using FileOutputStream in Java involves writing raw byte data to a file. The
FileOutputStream class is part of the byte stream family, which is designed for handling
raw binary data. It can be used to create a file and write data to it byte by byte.

10.2.1 Steps to Create a File Using FileOutputStream

 Import the Necessary Package: FileOutputStream is part of the java.io package,
so you need to import it.

 Create an Instance of FileOutputStream: You need to create a FileOutputStream
object, specifying the file you want to create or write to. If the file doesn't exist, it will
be created. If it exists, it can either be overwritten or appended to, depending on the
constructor used.

 Write Data to the File: Use the write() method to write data to the file. The data
should be in the form of bytes, so if you're writing text, you'll need to convert it into
bytes using String.getBytes().

 Close the Stream: Always close the FileOutputStream using the close() method
to release system resources and ensure all data is properly written to the file.

Figure 10.7 : Creating a text file

OOP with Java 10.7 Files

10.2.2 Example: Creating a File Using FileOutputStream

import java.io.FileOutputStream;

import java.io.IOException;

public class FileOutputStreamExample {

 public static void main(String[] args) {

 String data = "This is an example of writing data to a file using

FileOutputStream.";

 // Try-with-resources statement ensures that each resource is

closed at the end of the statement

 try (FileOutputStream fos = new FileOutputStream("output.txt")) {

 // Convert string data to byte array

 byte[] byteData = data.getBytes();

 // Write byte array to the file

 fos.write(byteData);

 // Output a message indicating success

 System.out.println("Data successfully written to the file.");

 } catch (IOException e) {

 // Handle any IOExceptions that may occur

 e.printStackTrace();

 }

 }

}

The following steps gives explanation for the above program..

 String data: A string containing the data to be written to the file.

 FileOutputStream fos = new FileOutputStream("output.txt"): This line
creates a new FileOutputStream object to write to a file named "output.txt". If
the file does not exist, it will be created. If it exists, it will be overwritten (if you want
to append to the file instead, use new FileOutputStream("output.txt", true)).

 data.getBytes(): Converts the string data to a byte array. The write() method of
FileOutputStream requires data in byte format.

 fos.write(byteData): Writes the byte array to the file.

 fos.close(): Closes the FileOutputStream. The try-with-resources statement
ensures that the stream is automatically closed, even if an exception occurs.

 Using try-with-resources : In the example above, we use the try-with-
resources statement, which is a good practice when dealing with I/O streams. This

Centre for Distance Education 10.8 Acharya Nagarjuna University

statement automatically closes the stream after the try block has finished executing,
which helps to avoid resource leaks and ensures that the file is properly closed.

10.3 READING DATA FROM A FILE USING FILE INPUT STREAM

Reading data from a file using FileInputStream in Java involves opening a file and reading
its raw byte data. The FileInputStream class is part of Java's I/O (Input/Output) system and
is used for reading streams of raw bytes, such as image or audio files. It's especially useful
when dealing with binary files where the data is not in a human-readable format.

Figure 10.8 : Reading data from a text file

10.3.1 Steps to Read Data from a File Using FileInputStream

 Import the Necessary Package: FileInputStream is part of the java.io package,
so you need to import it.

 Create an Instance of FileInputStream: Create a FileInputStream object by
passing the path of the file you want to read to its constructor. This opens the file for
reading.

 Read Data from the File: Use the read() method to read data from the file. This
method reads the next byte of data and returns it as an int. If the end of the file is
reached, it returns -1.

 Close the Stream: Always close the FileInputStream using the close() method to
free up system resources.

10.3.2 Example: Reading Data from a File Using FileInputStream

import java.io.FileInputStream;

import java.io.IOException;

public class FileInputStreamExample {

 public static void main(String[] args) {

 // Specify the file path

 String filePath = "example.txt";

OOP with Java 10.9 Files

 // Try-with-resources statement to ensure the FileInputStream is

closed

 try (FileInputStream fis = new FileInputStream(filePath)) {

 // Variable to hold the byte being read

 int byteData;

 // Read until the end of the file

 while ((byteData = fis.read()) != -1) {

 // Convert byte data to character and print to console

 System.out.print((char) byteData);

 }

 } catch (IOException e) {

 // Handle any IOExceptions

 e.printStackTrace();

 }

 }

}

The following steps gives explanation for the above program..

 String filePath = "example.txt": Defines the path to the file that will be read.
In this example, it assumes the file is in the current working directory.

 FileInputStream fis = new FileInputStream(filePath): Creates a new
FileInputStream object for the specified file. If the file does not exist, this will
throw a FileNotFoundException.

 int byteData: A variable to store the data read from the file. The read() method
returns the next byte of data as an int. If the end of the file is reached, read() returns
-1.

 while ((byteData = fis.read()) != -1): This loop reads the file byte by byte
until the end of the file is reached. Each byte read is cast to a char and printed to the
console.

 fis.close(): Although we do not explicitly call close() here, the try-with-
resources statement ensures that the FileInputStream is closed automatically
when the try block is exited, either normally or because of an exception.

 Using try-with-resources: The example uses the try-with-resources
statement, which is a recommended practice when working with I/O streams in Java.
This statement automatically closes the stream when it is no longer needed, helping to
prevent resource leaks.

Centre for Distance Education 10.10 Acharya Nagarjuna University

10.4 CREATING A FILE USING FILE WRITER

Creating a file using FileWriter in Java involves writing character data to a file.
FileWriter is part of Java's character stream classes, which are used for handling text data.
It writes characters to a file in a platform-independent manner, making it suitable for working
with text files.

Figure 10.9 Reading from and writing to files

10.4.1 Steps to Create a File Using FileWriter:

 Import the Necessary Package: FileWriter is part of the java.io package, so you
need to import it.

 Create an Instance of FileWriter: Create a FileWriter object by specifying the
file you want to create or write to. If the file doesn't exist, FileWriter will create it.
If it exists, it will be overwritten by default (you can append to the file by passing a
second argument as true).

 Write Data to the File: Use the write() method to write data to the file. The data
should be in the form of a string or an array of characters.

 Close the Stream: Always close the FileWriter using the close() method to
ensure that all data is properly written and resources are released.

10.4.2 Example: Creating a File Using FileWriter

import java.io.FileWriter;

import java.io.IOException;

public class FileWriterExample {

 public static void main(String[] args) {

 String data = "This is an example of writing data to a file using

FileWriter.";

OOP with Java 10.11 Files

 // Using try-with-resources to ensure FileWriter is closed

 try (FileWriter fw = new FileWriter("output.txt")) {

 // Write data to the file

 fw.write(data);

 // Print confirmation message

 System.out.println("Data successfully written to the file.");

 } catch (IOException e) {

 // Handle any IOExceptions

 e.printStackTrace();

 }

 }

}

The following steps gives explanation for the above program.

 FileWriter fw = new FileWriter("output.txt", true): The second argument
(true) tells the FileWriter to append to the file instead of overwriting it. If the file
doesn't exist, it will be created.

 fw.write(data): This writes the string data to the file. Since the FileWriter is in
append mode, the data is added to the end of the file

 Using try-with-resources: In both examples, we use the try-with-resources
statement, which is a best practice when dealing with I/O streams in Java. This
statement ensures that the FileWriter is automatically closed, even if an exception
occurs, which helps to prevent resource leaks.

10.5 READING A FILE USING FILE READER

Reading a file using FileReader in Java involves reading character data from a file.
FileReader is part of Java's character stream classes, designed for reading streams of
characters from a file. It's particularly useful for handling text files where the data is in
human-readable format.

10.5.1 Steps to Read a File Using FileReader

 Import the Necessary Package: FileReader is part of the java.io package, so you
need to import it.

 Create an Instance of FileReader: Create a FileReader object by passing the file
name or File object that you want to read from.

 Read Data from the File: Use the read() method to read characters from the file.
This method reads a single character at a time and returns it as an int. If the end of
the file is reached, it returns -1.

 Close the Stream: Always close the FileReader using the close() method to
release system resources.

Centre for Distance Education 10.12 Acharya Nagarjuna University

10.5.2 Example: Reading a File Using FileReader

import java.io.FileReader;

import java.io.IOException;

public class FileReaderExample {

 public static void main(String[] args) {

 // Specify the file to be read

 String filePath = "example.txt";

 // Using try-with-resources to ensure FileReader is closed

 try (FileReader fr = new FileReader(filePath)) {

 int character;

 // Read characters one by one from the file

 while ((character = fr.read()) != -1) {

 System.out.print((char) character); // Print each

character to the console

 }

 } catch (IOException e) {

 // Handle any IOExceptions

 e.printStackTrace();

 }

 }

}

The following steps gives explanation for the above program..

 String filePath = "example.txt": Specifies the path to the file that will be read.
In this example, it assumes the file is in the current working directory.

 FileReader fr = new FileReader(filePath): Creates a FileReader object for
the specified file. If the file does not exist, this will throw a
FileNotFoundException.

 int character: A variable to store each character read from the file. The read()
method returns the next character as an int. If the end of the file is reached, read()
returns -1.

 while ((character = fr.read()) != -1): This loop reads the file character by
character until the end of the file is reached. Each character read is cast to a char and
printed to the console.

 fr.close(): Although not explicitly called in this example, the try-with-

resources statement automatically closes the FileReader when the try block is
exited, either normally or due to an exception.

OOP with Java 10.13 Files

10.6 BINARY INPUT AND OUTPUT IN JAVA

Binary Input and Output (I/O) in Java refers to reading and writing data in binary format (i.e.,
as raw bytes) rather than the typical text format. Binary I/O is used for handling non-text data
like images, audio files, videos, and other types of binary data.

10.6.1 Binary Input in Java

Binary input involves reading data as raw bytes from a file or other data source. The
InputStream class and its subclasses (such as FileInputStream) are commonly used for
reading binary data.

Example: Reading Binary Data from a File

import java.io.FileInputStream;

import java.io.IOException;

public class BinaryInputExample {

 public static void main(String[] args) {

 try (FileInputStream fis = new FileInputStream("example.bin")) {

 int data;

 while ((data = fis.read()) != -1) {

 System.out.print((char) data); // Reads byte-by-byte and prints

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

In this example:

 FileInputStream is used to read binary data from a file.

 The read() method reads one byte at a time.

 -1 indicates the end of the file.

Centre for Distance Education 10.14 Acharya Nagarjuna University

10.6.2 Binary Output in Java

Binary output involves writing data as raw bytes to a file or another destination. The
OutputStream class and its subclasses (such as FileOutputStream) are used to write binary
data.

Example: Writing Binary Data to a File

import java.io.FileOutputStream;

import java.io.IOException;

public class BinaryOutputExample {

 public static void main(String[] args) {

 try (FileOutputStream fos = new FileOutputStream("example.bin")) {

 String data = "Hello, Binary World!";

 byte[] byteArray = data.getBytes();

 fos.write(byteArray); // Writes binary data to the file

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

In this example:

 FileOutputStream is used to write binary data to a file.

 The getBytes() method converts the String into a byte array.

 The write() method writes the byte array to the file.

10.6.3 Handling Binary Data with Streams

Java provides different classes to handle binary I/O:

1. FileInputStream: Reads data from a file as bytes.

2. FileOutputStream: Writes data to a file as bytes.

3. BufferedInputStream: Provides efficient reading of binary data by buffering input.

OOP with Java 10.15 Files

4. BufferedOutputStream: Provides efficient writing of binary data by buffering
output.

10.6.4 Advantages of Binary I/O

 Efficiency: Binary I/O is generally faster and more efficient than text-based I/O
because it doesn't involve character encoding and decoding.

 Precision: It allows precise representation of data (e.g., storing a 4-byte int exactly as
it is in memory, instead of converting it to a string).

 Handling Complex Data: Binary I/O is essential for reading and writing non-text
files like images, audio, and video files.

Binary Input and Output in Java is used for handling raw data such as images, audio, and
other non-text formats. Using InputStream and OutputStream classes, Java allows efficient
reading and writing of binary data, providing more control over the data format compared to
text based I/O.

10.7 RANDOM ACCESS OPERATIONS

Random access refers to the ability to access elements at any position in a file or data
structure directly, without needing to read through the entire file or structure sequentially. In
the context of file I/O in Java, random access allows for reading or writing to any part of a
file efficiently, without needing to process it from the beginning.

Java provides the RandomAccessFile class, which allows for both reading and writing to files
at any position, making it ideal for tasks where you need to access data at random positions
within a file, such as in databases, media files, or other structured data.

 Key Features of Random Access in Java

1. File Pointer: RandomAccessFile maintains a pointer (or cursor) that determines the
current position within the file. You can move this pointer to any byte in the file using
seek() and perform operations like reading and writing at that position.

2. Efficient Access: Unlike sequential access where data is processed in a linear fashion,
random access allows for efficient manipulation of data by directly moving the file
pointer to the desired position.

3. Read and Write Operations: RandomAccessFile supports both read and write
operations, allowing for flexible file manipulation.

 Creating a RandomAccessFile Object

To perform random access operations, you need to create a RandomAccessFile object,
specifying the file name and the mode (either "r" for read or "rw" for read-write).

import java.io.RandomAccessFile;

Centre for Distance Education 10.16 Acharya Nagarjuna University

import java.io.IOException;

public class RandomAccessExample {

 public static void main(String[] args) {

 try {

 // Creating a RandomAccessFile object in read-write mode

 RandomAccessFile file = new RandomAccessFile("example.txt", "rw");

 // Perform operations on the file here

 file.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

In this example:

 RandomAccessFile is created in read-write mode ("rw").

 The file is now open for random access operations.

 Seeking a Position in the File

You can move the file pointer to any position in the file using the seek(long pos) method. The
parameter pos specifies the byte position in the file (starting from 0).

Example: Moving the Pointer to a Specific Position

import java.io.RandomAccessFile;

import java.io.IOException;

public class SeekExample {

 public static void main(String[] args) {

 try {

 RandomAccessFile file = new RandomAccessFile("example.txt", "rw");

OOP with Java 10.17 Files

 // Moving the pointer to the 5th byte

 file.seek(5);

 // Read data from this position

 int data = file.read();

 System.out.println("Data at position 5: " + (char) data);

 file.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

In this example:

 seek(5) moves the file pointer to the 5th byte in the file.

 read() reads the byte from that position.

 Reading and Writing Data

After moving the pointer using seek(), you can perform read and write operations just like
with regular file I/O.

Example: Writing Data at a Specific Position

import java.io.RandomAccessFile;

import java.io.IOException;

public class RandomWriteExample {

 public static void main(String[] args) {

 try {

 RandomAccessFile file = new RandomAccessFile("example.txt", "rw");

 // Move the pointer to the 10th byte and write data

 file.seek(10);

 file.writeBytes("Hello, World!");

Centre for Distance Education 10.18 Acharya Nagarjuna University

 file.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

In this example:

 seek(10) moves the pointer to the 10th byte.

 writeBytes("Hello, World!") writes the string starting from that position.

 Reading Data at Random Positions

You can read data from any position by moving the pointer and then calling the appropriate
read methods (readByte(), readChar(), readInt(), etc.).

Example: Reading Integers at Random Positions

import java.io.RandomAccessFile;

import java.io.IOException;

public class RandomReadExample {

 public static void main(String[] args) {

 try {

 RandomAccessFile file = new RandomAccessFile("example.dat", "r");

 // Moving the pointer to the 4th byte and reading an integer

 file.seek(4);

 int data = file.readInt(); // Reads 4 bytes (an integer)

 System.out.println("Integer at position 4: " + data);

 file.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

OOP with Java 10.19 Files

In this example:

 seek(4) moves the pointer to the 4th byte.

 readInt() reads a 4-byte integer from that position.

 Modifying File Content

You can overwrite data at any position in the file. By using the seek() method, you can move
the file pointer to a specific byte and modify the content there. However, keep in mind that
writing to a position before the current size of the file will truncate the file content, which
might cause data loss.

 Advantages of Random Access

 Efficient File Handling: Random access allows you to read or write at any position in
a file without needing to load the entire file into memory.

 Direct Data Manipulation: You can efficiently modify specific parts of the file, such
as in databases or media files, where access to particular records or frames is
necessary.

 Improved Performance: For large files, random access minimizes the need for
sequential reads and writes, making it a faster approach for certain types of file
manipulation.

 Limitations of Random Access

 Not Suitable for All Data Types: Random access is ideal for binary files or structured
data but may not be as useful for text files or other data types that require sequential
reading and interpretation.

 Complexity: Managing file pointers and keeping track of positions in large files can
introduce complexity in your program logic.

10.8 SUMMARY

The chapter on Java Streams provides an in-depth exploration of Java’s input and output
(I/O) capabilities using streams. It begins by introducing the concept of stream classes,
explaining the distinction between byte streams and character streams, and their respective
uses for handling raw binary and text data. The chapter then delves into practical file
operations, demonstrating how to create files using FileOutputStream and FileWriter for
writing byte and character data, respectively. It also covers reading files using
FileInputStream and FileReader, showing how to efficiently read data from files, manage
resources, and handle exceptions properly. By the end of the chapter, learners will have a
comprehensive understanding of how to perform basic file I/O operations in Java, leveraging
the appropriate stream classes based on the type of data being processed.

Centre for Distance Education 10.20 Acharya Nagarjuna University

10.9 TECHNICAL TERMS

 Stream, InputOutput, Byte stream, Character stream, File

10.10 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the concept of Java streams and their hierarchy. Discuss the differences
between InputStream, OutputStream, Reader, and Writer classes,

2. Discuss the process of creating and writing to a file using FileOutputStream and
FileWriter in Java.

3. Describe the steps and methods involved in reading data from a file using
FileInputStream and FileReader.

4. Compare these two classes in terms of their functionality, data handling, and
typical use cases. Include examples to illustrate your points.

5. How do FileWriter and FileReader handle text data differently from
FileOutputStream and FileInputStream? Include examples of writing and reading
text files.

 Short Answer Questions:

1. What is a stream in Java, and why is it important for input and output operations?
2. Differentiate between byte streams and character streams in Java. Give examples

of classes used for each type of stream.
3. What is the primary purpose of the FileOutputStream class in Java? How do you

use it to create a new file?
4. Explain how to read data from a file using FileInputStream in Java. What

method is commonly used for this purpose?
5. Describe the purpose of the FileWriter class in Java. How does it differ from

FileOutputStream?
6. How does the FileReader class work in Java? What kind of data is it best suited

for?

10.11 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,
McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.
3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,
Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:
4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.
5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,
2007.
6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,
2014

AUTHOR: Dr. Vasantha Rudramalla

LESSON- 11

Exceptional Handling

OBJECTIVES:

After going through this lesson, you will be able to

 Understand the different types of errors

 Learn the difference between checked and unchecked exceptions.

 Learn how to use try, catch, finally, and try-with-resources statements to handle

exceptions effectively.

 Understand the use of the throws clause in method signatures

 Explore the role of the throw clause in input validation, error propagation, and

creating custom exceptions.

STRUCTURE OF THE LESSION:

11.1 Introduction
11.2 Errors in Java Program
11.3 Exceptions
11.4 Hierarchy of Exceptions
11.5 Exception Handling
11.6 Throws Clause
11. 7 Throw Clause
11.8 Summary
11.9 Technical Terms
11.10 Self-Assessment Questions
11.11 Further Readings

11.1 INTRODUCTION

Errors and exceptions are integral concepts in Java programming, representing situations

where the normal flow of a program is disrupted. Errors typically refer to serious issues that

are beyond the program's control, such as hardware failure or memory exhaustion, and are

categorized under the Error class. Exceptions, on the other hand, are conditions that arise

during runtime and can potentially be handled by the program to maintain smooth execution.

Java provides a robust mechanism to handle such scenarios through its exception hierarchy,

which includes checked exceptions, unchecked exceptions, and errors, all derived from the

Throwable superclass.

Exception handling is a fundamental aspect of Java, allowing developers to gracefully
manage runtime anomalies. Using constructs like try, catch, and finally, programs can

Centre for Distance Education 11.2 Acharya Nagarjuna University

anticipate and recover from exceptions without abruptly terminating. The throw and throws
clauses further refine exception handling. The throw clause is used to explicitly raise an
exception within a method, while the throws clause declares the exceptions that a method
may propagate, ensuring proper communication between different program components.
Together, these mechanisms provide a structured approach to creating reliable, fault-tolerant
Java applications.

11.2 ERRORS IN JAVA PROGRAM

Errors in Java can be broadly classified into several categories.

11.2.1. Syntax Errors:

 Syntax errors are errors in the structure of our code, usually detected at compile time. These
types of errors arise if rules of the language are not followed.

 Examples:

 - Missing semicolons (`;`).

 - Mismatched braces (`{}`, `[]`, `()`).

 - Incorrect method signatures.

 Example Code:

 public class Main {

 public static void main(String[] args) {

 System.out.println("Hello World" // Missing closing parenthesis

 }

 }

 11.2.2. Runtime Errors:

Runtime errors are errors that occur while the program is running, leading to abnormal
termination. These types of errors occur because the program tries to perform an operation
that is impossible to complete.

 Examples:

 - Division by zero (`ArithmeticException`).

 - Null pointer dereference (`NullPointerException`).

 - Array index out of bounds (`ArrayIndexOutOfBoundsException`).

 Example Code:

 public class Main {

 public static void main(String[] args) {

Object Oriented Programming with Java 11.3 Exception Handling

 int[] numbers = new int[5];

 System.out.println(numbers[10]); // ArrayIndexOutOfBoundsException

 }

 }

11.2.3. Logical Errors:

Logical errors are errors in the logic of your code that lead to incorrect results or behavior.
Logical error indicates that logic used for coding doesn’t produce expected output.

 Examples:

 - Incorrect algorithm implementation.

 - Misuse of conditional statements.

 Example Code:

 java

 public class Main {

 public static void main(String[] args) {

 int x = 10;

 if (x > 5) {

 System.out.println("x is less than 5"); // Incorrect message

 }

 }

 }

 11.2.4. Compilation Errors:

Errors that prevent the code from being compiled into bytecode.

 Examples:

 - Missing imports.

 - Type mismatch.

 Example Code:

 public class Main {

 public static void main(String[] args) {

 int num = "Hello"; // Type mismatch error

 }

 }

Centre for Distance Education 11.4 Acharya Nagarjuna University

 11.3 EXCEPTIONS

An exception is an event that usually signals an erroneous situation at run time. In java,
exceptions are wrapped up as objects and can be dealt in one of three ways:

 ignore it,

 handle it where it occurs

 handle it at another place in the program.

The exception object stores information about the nature of the problem. For
example, due to network problems or classes not found etc.

A Java Exception is an object that describes the exception that occurs in a program.

When an exception occurs in java, an exception is said to be thrown. The code that's
responsible for doing something about the exception is called an exception handler.

11.3.1 Various Categories of Exceptions

1123.1.1. Checked Exceptions

The first type of exception is known as a checked exception, and it is an exception that is

often caused by a user error or a problem that the programmer was unable to anticipate.

Another way to define checked exceptions is as follows: "Checked exceptions are the classes

that extend the Throwable class with the exception of RuntimeException and Error." An

example of an exception would be the situation in which a file is supposed to be opened but

the file cannot be located. It is not possible to simply disregard these exceptions during the

compilation process because they are examined throughout the compilation process. The

IOException, SQLException, and other exceptions are examples of checked exceptions.

11.3.1.2. Runtime Exceptions

Exceptions that are not checked during compilation are referred to as runtime exceptions.

These exceptions are ignored during the compilation process, but they are examined when the

program is being executed. In addition, the term "Unchecked Exceptions" can be described as

"The Classes that extend the RuntimeException class are known as Unchecked Exceptions."

Examples of exceptions include the ArithmeticException and the NullPointerException.

11.3.1.3 Errors:

Errors are not exceptions at all; rather, they are problems that originate from circumstances

that are beyond the control of either the user or the programmer. Errors are often disregarded

in your code because it is quite unusual that you are able to take any action to correct a

Object Oriented Programming with Java 11.5 Exception Handling

mistake. Errors will be generated, for instance, in the event that a stack overflow takes place.

At the time of compilation, they are also disregarded as irrelevant.

Figure 11.1 Types of Exceptions

Differences between checked and unchecked exceptions

Checked Exceptions Unchecked Exceptions
 represent invalid conditions in areas

outside the immediate control of the
program

 checked at compile time
 The exception that can be predicted by

the programmer
 The classes that extend Throwable class

except RuntimeException and Error are
known as checked exceptions

 e.g.IOException, SQLException etc.
Checked exceptions are checked at
compile-time.

 represent defects in the program (bugs)

 checked at run time
 Unchecked exception are ignored at compile

time.
 The classes that extend RuntimeException

are known as unchecked exceptions
 e.g. ArithmeticException,

NullPointerException,
ArrayIndexOutOfBoundsException etc.

11.4 HIERARCHY OF EXCEPTIONS

All exception classes are subtypes of the java.lang.Exception class. The exception class is a
subclass of the Throwable class. Other than the exception class there is another subclass
called Error which is derived from the Throwable class

In Java, exceptions are organized in a hierarchy that extends from the base class Throwable.
Understanding this hierarchy helps in properly handling exceptions and debugging issues in
your code.

Centre for Distance Education 11.6 Acharya Nagarjuna University

Figure 11.2 Exception hierarchy

11.4.1 Built in Exceptions:

List of Java Unchecked exceptions under RuntimeException

Object Oriented Programming with Java 11.7 Exception Handling

List of Java Checked Exceptions defined in java.lang

11.5 EXCEPTION HANDLING

Exception Handling is the mechanism to handle runtime malfunctions. We need to handle
such exceptions to prevent abrupt termination of the program. The term exception means
exceptional condition, it is a problem that may arise during the execution of program. A
bunch of things can lead to exceptions, including programmer error, hardware failures, files
that need to be opened cannot be found, resource exhaustion etc

The responsibility of Exceptional Handling is in charge of ensuring that the program
continues to flow normally. To accomplish this, we first try to capture the exception object
that is thrown by the incorrect condition, and then we should display the proper message so
that our actions can be corrected.

keywords are used to handle exceptions in Java

1. try

2. catch

3. finally

4. throw

5. throws

11.5.1 try – catch block

A method captures an exception by employing a combination of the try and catch operations.

A try/catch block is employed around the code that has the potential to produce an exception.

Code included within a try/catch block is known as protected code

Syntax:

Centre for Distance Education 11.8 Acharya Nagarjuna University

Fgure 11.3 try catch block

An exception catch statement is the declaration of the specific type of exception that is being

attempted to catch. Whenever an exception arises in protected code, the catch block (or

blocks) that immediately follows the try statement is examined. If the specific sort of

exception that has taken place is specified in a catch block, the exception is transferred to the

catch block in a similar manner as an argument is transferred to a method parameter.

Let's look at the below two Java programs that demonstrate dividing by zero, one without
exception handling and one with exception handling.

Fgure 11.4 try catch finally block

11.5.1.1 Without Exception Handling

This program demonstrates what happens when you attempt to divide by zero without
handling the exception. In Java, dividing an integer by zero will throw an
ArithmeticException.

Object Oriented Programming with Java 11.9 Exception Handling

public class DivideByZeroWithoutHandling {

 public static void main(String[] args) {

 int numerator = 10;

 int denominator = 0;

 // Attempting to divide by zero

 int result = numerator / denominator; // This line will throw an ArithmeticException

 System.out.println("Result: " + result); // This line will not be executed

 }

}

Output:

Exception in thread "main" java.lang.ArithmeticException: / by zero

 at DivideByZeroWithoutHandling.main(DivideByZeroWithoutHandling.java:7)

As seen from the output, the program terminates abruptly with an ArithmeticException.

Without Exception Handling, the program throws an ArithmeticException and terminates
immediately when the exception occurs.

Figure 11.5 without exception handling

Centre for Distance Education 11.10 Acharya Nagarjuna University

11.5.1.2 With Exception Handling

This program shows how to handle a divide-by-zero exception using a try-catch block. It
allows the program to continue running even if an exception occurs.

public class DivideByZeroWithHandling {

 public static void main(String[] args) {

 int numerator = 10;

 int denominator = 0;

 try {

 // Attempting to divide by zero

 int result = numerator / denominator;

 System.out.println("Result: " + result);

 } catch (ArithmeticException e) {

 // Handling the exception

 System.out.println("Error: Cannot divide by zero.");

 }

 System.out.println("Program continues after handling the exception.");

 }

}

Output:

Error: Cannot divide by zero.

Program continues after handling the exception.

With Exception Handling, the exception is caught in the catch block, allowing the program to
print a user-friendly error message and continue executing the rest of the code.

Using exception handling is crucial in ensuring that your program can handle errors
gracefully and continue running or terminate in a controlled manner.

Fig 11.6 try-catch block

Object Oriented Programming with Java 11.11 Exception Handling

11.5.2 Multiple catch blocks

In Java, multiple catch blocks allow you to handle different types of exceptions that might be

thrown by a 'try' block. Each catch block is used to handle a specific type of exception. This

helps in writing more precise and specific error-handling code, enabling the program to

respond differently depending on the type of exception that occurs.

Figure 11.7 multiple catch blocks

Example:

public class MultipleCatchBlocks {

 public static void main(String[] args) {

 try {

 int[] numbers = {1, 2, 3};

 int result = 10 / 0; // This will throw an ArithmeticException

 System.out.println(numbers[3]); // This will throw an

ArrayIndexOutOfBoundsException

 } catch (ArithmeticException e) {

 System.out.println("Caught an ArithmeticException: " + e.getMessage());

 } catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("Caught an ArrayIndexOutOfBoundsException: " +

e.getMessage());

 } catch (Exception e) {

 System.out.println("Caught a general exception: " + e.getMessage());

 }

Centre for Distance Education 11.12 Acharya Nagarjuna University

 System.out.println("Program continues after handling exceptions.");

 }

}

Output:

Caught an ArithmeticException: / by zero

Program continues after handling exceptions.

In the above program

 'try' Block Contains code that may throw different types of exceptions. In this example:

 - 'int result = 10 / 0;' throws an 'ArithmeticException'.

 - 'System.out.println(numbers[3]);' would throw an 'ArrayIndexOutOfBoundsException',

but it is never reached because of the previous exception.

Catch Blocks 'catch (ArithmeticException e)': This block catches 'ArithmeticException' and

handles it by printing a message. Since the exception is caught here, the other catch blocks

are not executed.

 - 'catch (ArrayIndexOutOfBoundsException e)': This block would catch an

'ArrayIndexOutOfBoundsException' if it occurred.

 - 'catch (Exception e)': This is a general catch block that catches any exception that is not

caught by the previous blocks. It acts as a fallback.

The important things we have to consider in exception handling mechanism are :

 Order of Catch Blocks: Catch blocks should be ordered from the most specific to the

most general. This is because Java checks each catch block in sequence, and the first

block that matches the exception type will be executed. If a more general exception

type (like 'Exception') is caught before a more specific one (like

'ArithmeticException'), the specific block will never be reached, which can lead to

compilation errors.

 Handling Multiple Exceptions: You can handle multiple exceptions of different types

in the same try block by defining multiple catch blocks. This makes your code more

robust and easier to debug.

 Common Superclass: If you want to handle exceptions that share a common

superclass, you can catch the superclass type. For example, catching 'Exception' will

catch any checked or unchecked exceptions.

Object Oriented Programming with Java 11.13 Exception Handling

11.5.5.5 Example: Using a Single Catch Block for Multiple Exceptions

Java 7 introduced multi-catch blocks, allowing multiple exceptions to be caught in a single

catch block using the '|' (pipe) symbol.

public class MultiCatchExample {

 public static void main(String[] args) {

 try {

 int[] numbers = {1, 2, 3};

 int result = 10 / 0; // This will throw an ArithmeticException

 System.out.println(numbers[3]); // This will throw an

ArrayIndexOutOfBoundsException

 } catch (ArithmeticException | ArrayIndexOutOfBoundsException e) {

 System.out.println("Caught an exception: " + e.getMessage());

 }

 System.out.println("Program continues after handling exceptions.");

 }

}

Output:

Caught an exception: / by zero

Program continues after handling exceptions.

This code is shorter and less repetitive when multiple exceptions are handled in the same

way. However, if you need different handling logic for different exceptions, using separate

catch blocks is still the preferred approach.

11.5.6 Finally block

In Java, the 'finally' block is a block of code that is always executed after the 'try' block,

regardless of whether an exception was thrown or caught. It is typically used to perform

clean-up operations, such as closing files, releasing resources, or resetting variables, ensuring

that these actions are always executed no matter what happens in the 'try' block.

11.5.6.1 Syntax :

The 'finally' block is written after the 'try' and any associated 'catch' blocks. It is optional but

is often used when resources need to be cleaned up.

Centre for Distance Education 11.14 Acharya Nagarjuna University

try {

 // Code that may throw an exception

} catch (ExceptionType1 e1) {

 // Handle exception of type ExceptionType1

} catch (ExceptionType2 e2) {

 // Handle exception of type ExceptionType2

} finally {

 // Code that will always be executed after the try and catch blocks

}

11.5.6.2 How the 'finally' Block Works

- Always Executed: The code inside the 'finally' block is always executed, even if an

exception is thrown and caught, or even if there is a return statement in the 'try' or 'catch'

blocks.

- Use Cases: It is used for code that must execute regardless of whether an exception occurs

or not, such as closing files or network connections, releasing locks, or cleaning up memory.

Figure 11.8 Finally block

Example

public class FinallyBlockExample {

 public static void main(String[] args) {

 try {

 int result = divide(10, 0); // This will throw an ArithmeticException

 System.out.println("Result: " + result);

 } catch (ArithmeticException e) {

 System.out.println("Caught an ArithmeticException: " + e.getMessage());

 } finally {

 System.out.println("This is the finally block. It always executes.");

Object Oriented Programming with Java 11.15 Exception Handling

 }

 System.out.println("Program continues after the try-catch-finally block.");

 }

 public static int divide(int a, int b) {

 return a / b;

 }

}

Output:

Caught an ArithmeticException: / by zero

This is the finally block. It always executes.

Program continues after the try-catch-finally block.

The things we have to remember during the usage of finally keyword are:

 Always Executes: The 'finally' block executes regardless of whether an exception is

thrown or caught in the 'try' or 'catch' blocks.

 Resource Management: It is ideal for closing resources such as file streams, database

connections, and sockets. This ensures that resources are properly released even if an

exception occurs.

 Exception in 'finally' Block: If an exception is thrown inside the 'finally' block, it will

override any exception thrown in the 'try' or 'catch' blocks. It’s generally advisable to

avoid throwing exceptions from the 'finally' block to prevent losing the original

exception.

 Return Statements: If there are return statements in the 'try' or 'catch' blocks, the

'finally' block will still execute. However, if there is a return statement in the 'finally'

block, it will override any previous return values from the 'try' or 'catch' blocks.

11.6 THROWS CLAUSE

In Java, the 'throws' clause is used in a method declaration to specify that the method might

throw one or more exceptions. It informs the compiler and developers using the method that

they need to handle these exceptions. The 'throws' clause is typically used with checked

exceptions (exceptions that are checked at compile time).

Centre for Distance Education 11.16 Acharya Nagarjuna University

 Syntax

The 'throws' clause is added to the method signature and lists the exceptions that the method

may throw. If a method does not handle a checked exception (i.e., does not use a 'try-catch'

block), it must declare it using the 'throws' clause.

public void methodName() throws ExceptionType1, ExceptionType2 {

 // Method code that might throw ExceptionType1 or ExceptionType2

}

Example

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

public class ThrowsExample {

 public static void main(String[] args) {

 try {

 readFile("example.txt");

 } catch (IOException e) {

 System.out.println("Caught IOException: " + e.getMessage());

 }

 }

 // Method declaring that it might throw IOException

 public static void readFile(String fileName) throws IOException {

 BufferedReader reader = new BufferedReader(new FileReader(fileName));

 String line = reader.readLine();

 System.out.println(line);

 reader.close();

 }

}

The above program illustrates the following points:

1. 'throws IOException' in 'readFile' Method:

 - The 'readFile' method declares that it might throw an 'IOException' using the 'throws'

clause.

Object Oriented Programming with Java 11.17 Exception Handling

 - The method performs file I/O operations, which might result in an 'IOException' if the file

does not exist or cannot be read.

2. Handling the Exception:

 - The 'main' method calls 'readFile' within a 'try' block and catches the potential

'IOException' using a 'catch' block.

 - This way, 'main' handles the exception, preventing the program from crashing.

We can also observe the following things from the above program:

1. Checked Exceptions: The 'throws' clause is mainly used for checked exceptions,

which must be handled either by a 'try-catch' block or by declaring them in the

method signature using 'throws'.

2. Unchecked Exceptions: Unchecked exceptions (subclasses of 'RuntimeException') do

not need to be declared or handled. Therefore, the 'throws' clause is generally not used

for them, although it can be if desired for clarity.

3. Method Signature: When a method declares a 'throws' clause, it becomes part of the

method signature. Any code calling this method must handle the exceptions listed in

the 'throws' clause, either by catching them or by declaring them in its own 'throws'

clause.

4. Multiple Exceptions: A method can declare multiple exceptions in the 'throws' clause,

separated by commas.

11.7 THROW CLAUSE

In Java, the 'throw' clause is used to explicitly throw an exception from a method or any

block of code. The 'throw' statement allows you to create an exception and then pass it to the

runtime system, which searches for an appropriate 'catch' block to handle the exception.

Syntax :

throw new ExceptionType("Error message");

Here, 'ExceptionType' is the type of the exception you want to throw (such as

'ArithmeticException', 'NullPointerException', 'IOException', etc.), and '"Error message"' is a

string that provides additional details about the exception.

Example

public class ThrowExample {

 public static void main(String[] args) {

 try {

Centre for Distance Education 11.18 Acharya Nagarjuna University

 checkNumber(-5);

 } catch (IllegalArgumentException e) {

 System.out.println("Caught an exception: " + e.getMessage());

 }

 }

 public static void checkNumber(int number) {

 if (number < 0) {

 throw new IllegalArgumentException("Number must be non-negative"); // Throwing

an exception

 }

 System.out.println("Number is: " + number);

 }

}

Output:

Caught an exception: Number must be non-negative

The above program illustrates the following things

1. 'throw new IllegalArgumentException("Number must be non-negative");': This line

explicitly throws an 'IllegalArgumentException' if the 'number' is negative. The

message "Number must be non-negative" is passed to the exception, providing details

about what went wrong.

2. Catching the Exception: In the 'main' method, the 'checkNumber' method is called

within a 'try' block. If the 'checkNumber' method throws an exception, it is caught by

the 'catch' block, which prints a message to the console.

When to Use the 'throw' Clause:

- Input Validation: To validate inputs or arguments passed to methods. If an argument

does not meet the required criteria, an exception can be thrown to indicate an error.

- Custom Exceptions: When creating custom exceptions, the 'throw' clause is used to

throw these exceptions. This can provide more specific error messages and help in

debugging.

- Error Propagation: To propagate exceptions to higher levels of the program where

they can be handled appropriately.

Object Oriented Programming with Java 11.19 Exception Handling

Example of Throwing a Custom Exception

// Custom exception class

class InvalidAgeException extends Exception {

 public InvalidAgeException(String message) {

 super(message);

 }

}

public class CustomExceptionExample {

 public static void main(String[] args) {

 try {

 validateAge(15);

 } catch (InvalidAgeException e) {

 System.out.println("Caught a custom exception: " + e.getMessage());

 }

 }

 public static void validateAge(int age) throws InvalidAgeException {

 if (age < 18) {

 throw new InvalidAgeException("Age must be 18 or older to register"); // Throwing

a custom exception

 }

 System.out.println("Age is valid for registration.");

 }

}

Output:

Caught a custom exception: Age must be 18 or older to register

Using the 'throw' statement effectively allows for precise error handling and helps maintain

robust and reliable code.

11.8 SUMMARY

Java exception handling is a mechanism that helps manage errors and exceptions, ensuring

robust and error-free code execution. This chapter covers various types of errors in Java

programs, such as syntax errors, runtime errors, and logical errors. It explores the hierarchy

of exceptions, starting from the base class Throwable and branching into Error and Exception

subclasses, with further distinctions between checked and unchecked exceptions. The chapter

Centre for Distance Education 11.20 Acharya Nagarjuna University

discusses key concepts in exception handling, including the try-catch blocks for capturing

and managing exceptions, the finally block for executing cleanup code, the throws clause for

declaring exceptions that a method might throw, and the throw clause for explicitly throwing

exceptions. Together, these tools allow developers to write more reliable and maintainable

Java programs by properly handling unexpected events and errors.

11.9 TECHNICAL TERMS

Error, exception, try, catch, throw , throws

11.10 SELF ASSESSMENT QUESTIONS

Essay questions:

1. What is exception handling in Java, and why is it important? explain with
examples

2. Explain with examples the use of multiple catch blocks in handling different
exceptions.

3. How do you explicitly throw an exception in Java? Provide an example.
4. Give an example of a method that uses the throws clause to indicate a checked

exception.

 Short Answer Questions:

1. What are the different types of errors in a Java program?
2. What is an Error in Java, and how is it different from an Exception?
3. Explain the difference between checked and unchecked exceptions in Java.
4. What happens if an exception is thrown in the finally block?

11.11 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,

McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,

Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,

2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,

2014

AUTHOR: Dr. Vasantha Rudramalla

LESSON- 12

BUILT-IN & OWN EXCEPTIONS

OBJECTIVES:

After going through this lesson, you will be able to

 Understand the built-in exceptions with detail

 Learn the difference between checked and unchecked exceptions.

 Learn how to create your own exceptions with detail

STRUCTURE OF THE LESSION:

12.1 Introduction

12.2 Key Features of Exception Handling

12.3 Comparison of Checked and Unchecked Exception

12.4 Custom Exception Handling

12.5 Steps to Create Custom Exception

12.6 Real-Time Applications of Custom Exceptions

12.7 Summary

12.8 Technical Terms

12.9 Self-Assessment Questions

12.10 Further Readings

Centre for Distance Education 12.2 Acharya Nagarjuna University

12.1 INTRODUCTION

Exception handling is a critical feature in Java that ensures the smooth execution of

programs, even in the presence of errors or unexpected conditions. Exception handling is a

cornerstone of Java programming, enabling developers to address unexpected conditions and

runtime errors effectively. Java provides a robust exception hierarchy, including built-in

exceptions such as IOException, NullPointerException, and ArithmeticException, to handle

common errors. These exceptions simplify error detection and recovery but may not always

align with specific application needs. To address unique business requirements and improve

clarity, Java allows developers to create their own custom exception classes. Custom

exceptions enhance code readability by providing domain-specific error representations,

making it easier to debug and maintain applications. This chapter delves into Java’s built-in

exceptions, exploring their usage and limitations, while also guiding readers on designing

custom exception subclasses. Best practices for exception handling are discussed to ensure

clean, efficient, and reliable code that is easy to manage and extend.

12.2 KEY FEATURES OF EXCEPTION HANDLING

Its importance can be summarized through the following key points:

1. Ensures Program Stability

 Exceptions allow programs to handle errors gracefully without abruptly crashing.

 By catching and handling exceptions, developers can ensure that the program

continues to function for unaffected operations, providing a seamless user experience.

2. Improves Debugging and Maintenance

 Java provides detailed exception messages and stack traces, helping developers

pinpoint the cause and location of errors.

 Proper exception handling structures the code to isolate and address specific error

scenarios, making debugging and maintenance more manageable.

3. Encourages Robust Code Design

 With exception handling, developers anticipate potential issues and write code that

accounts for edge cases.

 It enforces defensive programming practices, leading to more resilient and reliable

applications.

OOP with Java 12.3 Built-in and Own Exception

4. Facilitates Error Recovery

 Exception handling allows programs to recover from errors instead of terminating.

For example:

o Retrying an operation in case of network failure.

o Using alternative resources when a file is unavailable.

5. Enables Separation of Concerns

 The use of try, catch, and finally blocks separates error-handling logic from regular

business logic.

 This separation improves code readability and modularity.

6. Supports Resource Management

 Exception handling is essential for managing resources like file streams, database

connections, and network sockets.

 The try-with-resources feature in Java ensures that resources are automatically closed,

even if an exception occurs, preventing resource leaks.

7. Comprehensive Error Communication

 Custom exceptions enable developers to create meaningful, context-specific error

messages.

 This improves communication between different parts of the program and helps

developers understand and resolve issues more effectively.

8. Fosters Standardized Error Handling

 Java's structured hierarchy ensures consistency in how errors are defined and handled.

 By adhering to Java’s conventions, developers create predictable and understandable

error-handling mechanisms.

Example

Consider a file-reading operation:

try {

 BufferedReader reader = new BufferedReader(new FileReader("data.txt"));

 String line = reader.readLine();

 System.out.println(line);

 reader.close();

} catch (FileNotFoundException e) {

 System.err.println("File not found: " + e.getMessage());

} catch (IOException e) {

 System.err.println("Error reading file: " + e.getMessage()); }

Centre for Distance Education 12.4 Acharya Nagarjuna University

This example highlights how exception handling ensures the program can handle missing
files or read errors without crashing. Exception: handling Java is essential for building robust,
user-friendly, and maintainable applications. It equips developers with tools to anticipate,
manage, and recover from runtime errors, ensuring applications run reliably in diverse
environments.

12.3 COMPARISION OF CHECKED AND UNCHECKED EXCEPTION

Aspect Checked Exceptions Unchecked Exceptions

Definition Exceptions that must be either handled
using a try-catch block or declared in the
throws clause of a method.

Exceptions that are not required to be
explicitly handled or declared in the
throws clause.

Examples IOException, SQL Exception,
ClassNotFoundException

NullPointer Exception, Array
IndexOutOfBoundsException,
ArithmeticException

Category Subclasses of the Exception class,
excluding RuntimeException.

Subclasses of the RuntimeException
class.

Compile-
Time
Enforcement

Checked at compile time. The compiler
ensures that these exceptions are properly
handled.

Not checked at compile time.
Developers are responsible for handling
these exceptions.

Nature of
Errors

Represent recoverable errors that can occur
in normal program operation.

Represent programming errors or bugs,
such as invalid arguments or logical
mistakes.

Use Cases Used for predictable and recoverable
situations, such as file not found or invalid
user input.

Used for unexpected and usually
irrecoverable situations, such as null
pointer dereferences or division by
zero.

Declaration
Requirement

Must be declared in the method signature
using the throws keyword if not handled
within the method.

No declaration in the method signature
is required.

Impact on
Code

Requires more verbose handling due to
enforced error management.

Simplifies code as handling is optional
but relies on careful coding to avoid
runtime crashes.

Best Practices Use when the program can and should
recover from the exception.

Use for errors caused by bugs or
situations unlikely to be recovered
during runtime.

OOP with Java 12.5 Built-in and Own Exception

Example of Checked Exception

import java.io.*;

public void readFile(String filePath) throws IOException {

 BufferedReader reader = new BufferedReader(new FileReader(filePath));

 System.out.println(reader.readLine());

 reader.close();

}

In this example, IOException is a checked exception, and the method must declare it in the
throws clause or handle it within a try-catch block.

Example of Unchecked Exception

public int divide(int a, int b) {

 return a / b; // May throw ArithmeticException if b is 0

}

Here, ArithmeticException is an unchecked exception. It is not required to be handled
explicitly but will cause a runtime crash if not managed.

 Checked Exceptions: Suitable for recoverable errors; enforce disciplined error
handling at compile time.

 Unchecked Exceptions: Used for programmer errors or unexpected scenarios; offer
flexibility but require diligence to avoid runtime failures.

12.4 CUSTOM EXCEPTIONS

Custom exceptions in Java are essential for building robust and maintainable applications.
They allow developers to define application-specific error conditions, improving clarity,
usability, and debugging. Here’s a detailed explanation of their necessity, focusing on
addressing specific domain requirements and enhancing code readability and debugging:

1. Addressing Specific Domain Requirements

Custom exceptions are tailored to the unique needs of an application or domain, enabling
precise handling of domain-specific issues. Unlike built-in exceptions, which are generic,
custom exceptions convey the exact nature of a problem in the context of the application.

 Clearer Problem Identification: Custom exceptions make it immediately apparent
what went wrong within a specific domain. For example, in a banking application:

Centre for Distance Education 12.6 Acharya Nagarjuna University

o Instead of throwing a generic Exception, a LowBalanceException explicitly
signals an insufficient funds issue.

 Improved Error Handling Logic: They enable developers to implement targeted
handling strategies for specific scenarios. For instance:

o A PaymentFailedException might trigger a retry mechanism.

o A UserNotAuthorizedException could redirect the user to a login page.

 Domain-Specific Workflows: Custom exceptions help enforce rules and workflows in
the domain model. For example:

public class InvalidAgeException extends Exception {

 public InvalidAgeException(String message) {

 super(message);

 }

}

public void registerUser(int age) throws InvalidAgeException {

 if (age < 18) {

 throw new InvalidAgeException("Age must be 18 or older.");

 }

}

This makes the business rule (minimum age requirement) explicit in the code.

2. Enhancing Code Readability and Debugging

Custom exceptions make code easier to understand and debug by clearly communicating the
cause of an error.

 Meaningful Exception Names: Custom exceptions with descriptive names, such as
InvalidTransactionException or ResourceNotAvailableException, convey the exact
issue without requiring developers to read error messages or dig into code.

 Separation of Concerns: By introducing custom exceptions, error-handling logic
becomes more modular and focused on specific scenarios. This separation enhances
readability and maintainability.

try {

 withdraw(amount);

OOP with Java 12.7 Built-in and Own Exception

} catch (LowBalanceException e) {

 System.out.println("Withdrawal failed: " + e.getMessage());

}

 Rich Context for Debugging: Custom exceptions allow developers to
include additional details, such as error codes or metadata, providing a
richer context for debugging.

public class OrderProcessingException extends Exception {

 private int orderId;

 public OrderProcessingException(String message, int orderId) {

 super(message);

 this.orderId = orderId;

 }

 public int getOrderId() {

 return orderId;

 }

}

 Enhanced Stack Traces: Custom exceptions make stack traces easier to interpret
because they are directly tied to application-specific logic. A trace that includes
PaymentGatewayException is far more informative than one with a generic
Exception.

 Consistent Error Communication: Using custom exceptions enforces consistent
patterns for error reporting across the application, making logs and debugging outputs
more organized.

Benefits in Practice

1. Domain-Specific Clarity: When a ProductOutOfStockException is thrown, it clearly
indicates the problem compared to a generic RuntimeException.

2. Precise Handling: Custom exceptions allow focused error-handling strategies without
needing to parse error messages or use catch-all blocks.

3. Improved User Experience: End-users can receive clear and actionable error messages
derived from custom exceptions.

Centre for Distance Education 12.8 Acharya Nagarjuna University

12. 5 STEPS TO CREATE CUSTOM EXCEPTION

Creating a custom exception in Java involves defining a new class that extends an existing
exception class. Follow these steps to create and use a custom exception:

1. Decide on the Type of Exception

 Checked Exception: Extend the Exception class if the error condition must be
explicitly handled or declared (throws clause).

 Unchecked Exception: Extend the RuntimeException class if the error represents a
programming error or is optional to handle.

2. Define the Custom Exception Class

 Extend the appropriate base exception class (Exception or RuntimeException).

 Add constructors to allow various ways of initializing the exception.

3. Implement Constructors

Include constructors that:

1. Default Constructor: Initializes the exception without any details.

2. Message Constructor: Accepts a custom error message for descriptive errors.

3. Message and Cause Constructor: Provides both a custom message and the underlying
cause of the error.

Example Code:

public class CustomException extends Exception {

 // Default constructor

 public CustomException() {

 super("Default error message");

 }

 // Constructor with a custom message

 public CustomException(String message) {

 super(message);

 }

 // Constructor with a custom message and cause

 public CustomException(String message, Throwable cause) {

 super(message, cause);

OOP with Java 12.9 Built-in and Own Exception

 }

}

4. Optionally Add Custom Fields

If additional context is needed, include custom fields with getter methods for more detailed

error information.

Example Code:

public class UserNotFoundException extends Exception {

 private int userId;

 public UserNotFoundException(String message, int userId) {

 super(message);

 this.userId = userId;

 }

 public int getUserId() {

 return userId;

 }

}

5. Use the Custom Exception

Throw the custom exception in your application logic when the specific error condition

occurs.

Example Code:

public void findUser(int userId) throws UserNotFoundException {

 if (userId != 12345) { // Simulating a condition

 throw new UserNotFoundException("User not found with ID: " + userId,

userId);

 }

 System.out.println("User found!");

}

6. Handle the Custom Exception

Handle the exception using a try-catch block or propagate it further using the throws clause.

Example Code:

public static void main(String[] args) {

 try {

Centre for Distance Education 12.10 Acharya Nagarjuna University

 findUser(999); // Pass an invalid ID

 } catch (UserNotFoundException e) {

 System.err.println("Error: " + e.getMessage());

 System.err.println("User ID: " + e.getUserId());

 }

}

 Test the Exception

Ensure the custom exception behaves as expected:

 Verify it is thrown under the correct conditions.

 Confirm that the error message and context are accurate.

12.6 REAL-TIME APPLICATIONS OF CUSTOM EXCEPTIONS

Custom exceptions are widely used in real-world applications to handle domain-specific
errors, improve clarity, and create more robust error-handling mechanisms. Here are
examples demonstrating practical use cases:

1. E-commerce Application: Handling Insufficient Stock

In an e-commerce application, when a customer attempts to purchase more items than are
available, a InsufficientStockException can be thrown.

Code Example

// Custom exception for insufficient stock

public class InsufficientStockException extends Exception {

 public InsufficientStockException(String message) {

 super(message);

 }

}

// Inventory class

public class Inventory {

 private int stock;

OOP with Java 12.11 Built-in and Own Exception

 public Inventory(int stock) {

 this.stock = stock;

 }

 public void purchaseItem(int quantity) throws InsufficientStockException {

 if (quantity > stock) {

 throw new InsufficientStockException("Insufficient stock. Available: " + stock);

 }

 stock -= quantity;

 System.out.println("Purchase successful! Remaining stock: " + stock);

 }

}

// Main class

public class ECommerceApp {

 public static void main(String[] args) {

 Inventory inventory = new Inventory(10);

 try {

 inventory.purchaseItem(12); // Attempting to purchase more than available

 } catch (InsufficientStockException e) {

 System.err.println("Error: " + e.getMessage());

 }

 }

}

2. Banking Application: Handling Insufficient Balance

In a banking application, a InsufficientBalanceException can be used to handle scenarios
where a user tries to withdraw more money than their account balance.

Centre for Distance Education 12.12 Acharya Nagarjuna University

Code Example

// Custom exception for insufficient balance

public class InsufficientBalanceException extends RuntimeException {

 public InsufficientBalanceException(String message) {

 super(message);

 }

}

// BankAccount class

public class BankAccount {

 private double balance;

 public BankAccount(double initialBalance) {

 this.balance = initialBalance;

 }

 public void withdraw(double amount) {

 if (amount > balance) {

 throw new InsufficientBalanceException("Insufficient balance. Available: " +
balance);

 }

 balance -= amount;

 System.out.println("Withdrawal successful! Remaining balance: " + balance);

 }

}

// Main class

public class BankingApp {

 public static void main(String[] args) {

 BankAccount account = new BankAccount(500.0);

OOP with Java 12.13 Built-in and Own Exception

 try {

 account.withdraw(600.0); // Attempting to withdraw more than the balance

 } catch (InsufficientBalanceException e) {

 System.err.println("Error: " + e.getMessage());

 }

 }

}

3. Student Management System: Invalid Age Entry

In an education system, a InvalidAgeException can be used to ensure that students meet the
minimum age requirement for admission.

Code Example

// Custom exception for invalid age

public class InvalidAgeException extends Exception {

 public InvalidAgeException(String message) {

 super(message);

 }

}

// Student class

public class Student {

 public void registerStudent(String name, int age) throws InvalidAgeException {

 if (age < 18) {

 throw new InvalidAgeException("Age must be 18 or older for registration.");

 }

 System.out.println("Student registered successfully: " + name);

 }

}

Centre for Distance Education 12.14 Acharya Nagarjuna University

// Main class

public class StudentManagementApp {

 public static void main(String[] args) {

 Student student = new Student();

 try {

 student.registerStudent("John Doe", 16); // Invalid age

 } catch (InvalidAgeException e) {

 System.err.println("Registration error: " + e.getMessage());

 }

 }

}

4. Online Booking System: Invalid Date for Reservation

In an online booking system, a InvalidBookingDateException can validate the reservation
date to ensure it is not in the past.

Code Example

import java.time.LocalDate;

// Custom exception for invalid booking date

public class InvalidBookingDateException extends Exception {

 public InvalidBookingDateException(String message) {

 super(message);

 }

}

// Booking class

public class Booking {

 public void makeReservation(LocalDate bookingDate) throws
InvalidBookingDateException {

 if (bookingDate.isBefore(LocalDate.now())) {

OOP with Java 12.15 Built-in and Own Exception

 throw new InvalidBookingDateException("Booking date cannot be in the past.");

 }

 System.out.println("Reservation successful for date: " + bookingDate);

 }

}

// Main class

public class BookingApp {

 public static void main(String[] args) {

 Booking booking = new Booking();

 try {

 booking.makeReservation(LocalDate.of(2023, 11, 20)); // Past date

 } catch (InvalidBookingDateException e) {

 System.err.println("Booking error: " + e.getMessage());

 }

 }

}

Advantages of Using Custom Exceptions in Real-Time Applications

1. Domain-Specific Errors: Clearly represent application-specific error conditions (e.g.,
insufficient stock, invalid age).

2. Enhanced Debugging: Provide meaningful messages and context to identify and
resolve issues faster.

3. Improved Readability: Simplify code by avoiding generic exceptions and making
error conditions explicit.

4. Custom Handling Logic: Enable targeted handling strategies for specific business
scenarios.

These examples illustrate how custom exceptions improve the robustness and maintainability
of real-world Java applications.

Centre for Distance Education 12.16 Acharya Nagarjuna University

12.7 SUMMARY

Exception handling is a vital aspect of Java programming, ensuring robust and error-resilient
applications. Java provides a rich hierarchy of built-in exceptions, such as IOException and
NullPointerException, to manage common runtime issues effectively. While these exceptions
address generic scenarios, many applications require more specific error representation,
making custom exception subclasses essential. Developers can create custom exceptions by
extending the Exception or RuntimeException classes, providing clear, domain-specific error
messages that enhance code readability and debugging. To use exceptions effectively, it is
crucial to follow best practices, such as avoiding overuse, providing meaningful error
messages, and leveraging checked exceptions for recoverable errors and unchecked
exceptions for programming mistakes. By combining built-in and custom exceptions with
proper guidelines, developers can design clean, maintainable, and user-friendly error-
handling mechanisms tailored to their application’s needs.

12.8 TECHNICAL TERMS

Error, exception, try, catch, throw, throws, Checked Exceptio, Unchecked Exception.

12.9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. What are the guidelines for deciding when to use checked and unchecked
exceptions?

2. How can custom exceptions improve debugging and code readability? Explain
with examples.

3. Illustrate the use of try-catch-finally blocks with a real-world scenario.
4. Discuss the impact of improper exception handling on software quality and

performance.
5. Write a program that demonstrates the use of multiple custom exceptions in a

single application.
6. Why is it essential to clean up resources in the finally block? Provide an

example to support your explanation.

 Short Answer Questions:

1. Define built-in exceptions in Java.
2. What is the difference between checked and unchecked exceptions?
3. Give two examples of built-in exceptions in Java.
4. What is the purpose of the Throwable class in Java?
5. What are custom exceptions in Java?

12.10 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,

McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

OOP with Java 12.17 Built-in and Own Exception

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,

Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,

2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,

2014

AUTHOR: Dr. Vasantha Rudramalla

 LESSON- 13

THREAD

OBJECTIVES:

After going through this lesson, you will be able to

 Understand what is multi-tasking

 Differentiate between process-based and thread-based multi-tasking

 Learn about the various uses of threads in Java

 Learn the different ways to create a thread in Java

 Familiarize with important methods of the Thread class

 Learn about Thread priorities, daemon thread etc.

STRUCTURE OF THE LESSION:

13.1 Introduction

13.2 Multi-Tasking

13.3 Uses of Threads

13.4 Thread Life Cycle

13.5 Creating a Thread and Running it

13.6 Terminating the Thread

13.7 Thread Class Methods

13.8 Interrupting Threads

13.9 Thread Priorities

13.10 Synchronizing Threads

13.11 Interthread Communication

13.12 Thread Groups

13.13 Deamon Thread

13.14 Summary

13.15 Technical Term

13.16 Self-Assessment Question

13.17 Further Readings

Centre for Distance Education 13.2 Acharya Nagarjuna University

13.1 INTRODUCTION

The direction or path that is taken while a program is being executed is referred to as a thread
in the Java programming language. In general, every program has at least one thread, which
is referred to as the main thread. This thread is provided by the Java Virtual Machine (JVM)
at the beginning of the execution of the program. At this moment, the main thread is the one
that calls the main () method. This occurs when the main thread is specified.
The execution thread of a program is referred to as a thread. When an application is executing
on the Java Virtual Machine, it is possible for the application to run many threads of
execution simultaneously. Some threads have a higher priority than others. The execution of
higher priority threads comes before the execution of lower priority threads.
The reason why thread is so important to the program is that it makes it possible for several
actions to take place within a single procedure. In many cases, the program counter, stack,
and local variable are all assigned to each individual thread in the program.
Java's Thread feature allows for concurrent execution, which helps to divide work and
increase overall speed. When it comes to successfully managing processes such as
input/output and network connection, it is absolutely necessary. For Java applications to be
responsive, having a solid understanding of threads is essential.

13.2 MULTI TASKING

The term "multitasking" refers to the capability of a computer system to carry out many tasks

at the same time or in time intervals that overlap with one another. It is possible to

accomplish this through two different methods: multitasking by utilizing several processes or

multitasking by utilizing numerous threads. The utilization of threads is the primary emphasis

of Java's multitasking capabilities.

There exist two clearly identified categories of multitasking:

 Process-based and

 Thread-based.

It is crucial to clarify the distinction between two. Process is the term used to define the

Program in active execution. Thus, process-based multitasking is the capability that enables

your computer to execute two or more programs simultaneously. For instance, we can

concurrently utilize the Java compiler and text editor services. One other illustration is our

capacity to perceive the music and simultaneously obtain the printed materials from the

printer.

The thread is the fundamental unit of dispatchable code in the thread-based multitasking

environment. This implies that a single program has the capability to include multiple

components, each of which is referred to as a Thread module. For instance, the text editor has

the capability to both Format the text and Print it. While Java applications utilize process-

Object Oriented Programming with Java 13.3 Threads

based multitasking environments, the specific architecture of these environments is not well

defined.

Figure 13.1: Process based multitasking

Figure 13.2 Thread based multitasking

Table 13.1 Process based Vs Thread based multitasking

Process-Based Multitasking Thread – based Multitasking

 This deals with "Big Picture"

 These are Heavyweight tasks

 Inter-process communication is
expensive and limited

 Context switching from one process to
another is costly in terms of memory

 This is not under the control of Java

 This deals with Details

 These are Lightweight tasks

 Inter-Thread communication is
inexpensive.

 Context switching is low cost in terms
of memory, because they run on the
same address space

 This is controlled by java

Centre for Distance Education 13.4 Acharya Nagarjuna University

13.3 USES OF THREADS

Threads in Java are used to achieve concurrent execution, which allows multiple tasks to be

performed simultaneously or in overlapping periods. This can improve the performance and

responsiveness of applications.

1. Improving Application Responsiveness

- User Interfaces: In GUI applications (e.g., Swing, JavaFX), threads are used to keep the user

interface responsive. For example, background tasks like loading data or performing

computations are run in separate threads so that the main UI thread remains responsive to

user inputs.

2. Parallel Processing

- Data Processing: Threads can be used to process large datasets in parallel. For instance, you

can split data into chunks and process each chunk in a separate thread to speed up

computation.

3. Asynchronous Operations

- Non-blocking Tasks: Threads allow for asynchronous execution of tasks that would

otherwise block the main thread, such as network calls or file I/O operations. This ensures

that other tasks can proceed while waiting for the asynchronous operation to complete.

4. Handling Multiple Client Connections

- Server Applications: In server applications, such as web servers or chat servers, threads are

used to handle multiple client connections simultaneously. Each client request can be

processed in a separate thread, allowing the server to handle multiple requests concurrently.

5. Real-Time Systems

- Real-Time Processing: In systems that require real-time processing, such as video games or

real-time data analysis, threads can be used to ensure that tasks are performed within strict

timing constraints.

6. Periodic Tasks

- Scheduled Tasks: Threads are used to perform periodic tasks, such as regular data updates

or scheduled maintenance tasks. The 'ScheduledExecutorService' can be used to schedule

tasks to run at fixed intervals or after a delay.

7. Background Tasks

- Long-Running Operations: Threads are useful for executing long-running background tasks

without blocking the main execution flow. For example, you might use threads to perform

background data processing or resource loading.

Object Oriented Programming with Java 13.5 Threads

8. Parallel Algorithms

- Computational Algorithms: Many algorithms can benefit from parallel execution. Threads

can be used to implement parallel algorithms, such as divide-and-conquer strategies or

parallel sorting algorithms.

9. Task Coordination

- Coordinating Tasks: Threads can be used to coordinate complex task execution flows, such

as task dependencies and inter-task communication. Java provides mechanisms like

'CountDownLatch', 'CyclicBarrier', and 'Semaphore' to manage coordination between threads.

10. Thread Pools and Resource Management

- Efficient Resource Use: Thread pools are used to efficiently manage a large number of tasks

by reusing a fixed number of threads. This avoids the overhead of creating and destroying

threads frequently and helps in managing system resources.

Threads in Java provide a powerful mechanism for concurrent and parallel processing,

allowing for improved performance, responsiveness, and resource management. They enable

various use cases from improving application responsiveness and handling multiple client

connections to performing parallel computations and managing periodic tasks. Properly

managing threads and ensuring thread safety are crucial for building robust and efficient

multi-threaded applications.

13.4 THREAD LIFE CYCLE

The Java thread lifecycle refers to the various stages that a thread undergoes from its creation

to its termination.

Figure 13.3 Thread life cycle

Centre for Distance Education 13.6 Acharya Nagarjuna University

 New: When a thread is first created but hasn't yet started running, it is in the "New" state.
At this point, the thread is not eligible for execution.

 Runnable: Once the thread's start() method is called, the thread moves to the
"Runnable" state. This doesn’t mean the thread is currently running; it simply means it’s
ready to run and is waiting for CPU time. The thread could be actively running or just waiting
for its turn to execute.

 Blocked: A thread enters the "Blocked" state when it is waiting to acquire a lock or
resource that is currently held by another thread. It will remain blocked until the resource
becomes available.

 Waiting: In the "Waiting" state, a thread is waiting indefinitely for another thread to
perform a particular action. This state is typically reached by calling methods like
Object.wait().

 Timed Waiting: This is similar to the "Waiting" state, but the thread waits for a specific
period of time. It might use methods like Thread.sleep() or Object.wait(long timeout)
to enter this state. The thread will return to the runnable state either when the specified time
elapses or when another thread interrupts it.

 Terminated: A thread moves to the "Terminated" state when it has finished its execution.
This means the thread has completed its run() method or has been terminated due to an
exception.

Below is the execution flow of Thread life cycle i.e. how a thread goes into ready state from

born state and from ready to running and finally into Dead state.

Initially, a thread is in the "New" state after being instantiated but not yet started. Once the

start() method is invoked, the thread transitions to the "Runnable" state, where it is eligible

for execution by the CPU. During its execution, a thread may enter the "Blocked" state if it

needs to wait for a resource or lock held by another thread, or the "Waiting" state if it waits

indefinitely for a specific condition. It can also be in the "Timed Waiting" state if it waits for

a specific period. Finally, a thread moves to the "Terminated" state upon completing its task

or if it is terminated due to an exception. Understanding this lifecycle is crucial for effective

thread management and synchronization in Java applications.

13.5 CREATING A THREAD AND RUNNING IT

In Java, there are two primary ways to create a thread:

1. Extending the 'Thread' Class:

Object Oriented Programming with Java 13.7 Threads

 - We can create a new thread by subclassing the 'Thread' class and overriding its 'run()'
method. This method contains the code that will be executed when the thread starts. After
creating an instance of your subclass, we invoke the 'start()' method to begin execution.

 class MyThread extends Thread {

 public void run() {

 // Code to be executed by the thread

 }

 }

 public class Main {

 public static void main(String[] args) {

 MyThread t = new MyThread();

 t.start();

 }

 }

2. Implementing the 'Runnable' Interface:

 - Another way to create a thread is by implementing the 'Runnable' interface, which
requires we to define the 'run()' method. You then pass an instance of our 'Runnable'
implementation to a 'Thread' object and start the thread by calling its 'start()' method.

 class MyRunnable implements Runnable {

 public void run() {

 // Code to be executed by the thread

 }

 }

 public class Main {

 public static void main(String[] args) {

 MyRunnable myRunnable = new MyRunnable();

 Thread t = new Thread(myRunnable);

 t.start();

 }

 }

Both approaches have their use cases. Extending 'Thread' is straightforward but limits your
ability to inherit from other classes since Java supports single inheritance. Implementing
'Runnable' is more flexible, allowing our class to extend other classes while still being able to
run in its own thread.

Centre for Distance Education 13.8 Acharya Nagarjuna University

13.6 TERMINATING THE THREAD

A terminated thread means it is dead and no longer available.

A thread may remain in the terminated state for the following reasons:

 Termination occurs when a thread normally finishes its work.

 Sometimes threads may terminate due to unusual events like segmentation faults,
exceptions. Such termination may be termed abnormal termination.

Terminating a thread in Java requires a cooperative approach.

 Using a Volatile Flag:

Create a volatile boolean variable (e.g., isRunning) in your thread class.

In our thread's run() method, periodically check the value of this flag. If it's set to false, exit
the loop and terminate the thread.

From another thread, set the flag to false when you want to terminate the thread.

public class MyThread extends Thread {

 private volatile boolean isRunning = true;

 public void run() {

 while (isRunning) {

 // Do some work

 }

 }

 public void stopRunning() {

 isRunning = false;

 }

}

 Using the interrupt() Method:

Use the interrupt() method on the thread you want to terminate.

Inside the thread's run() method, check for the interrupt status using Thread.interrupted() or
catch the InterruptedException.

If the thread is interrupted, perform any necessary cleanup and exit the loop.

public class MyThread extends Thread {

 public void run() {

 try {

 while (!Thread.interrupted()) {

Object Oriented Programming with Java 13.9 Threads

 // Do some work

 }

 } catch (InterruptedException e) {

 // Thread interrupted, perform cleanup

 }

 }

}

13.7 THREAD CLASS METHODS

The Thread class in Java provides several methods to manage thread behavior and interact
with thread execution. The following picture depicts the various thread methods.

Figure 13.4 : Thread class methods

When we write MyThread t1=new MyThread() then thread is in the New/Born state.

When we call t.start() method then thread enters into Ready State or Runnable State.

If Thread Scheduler allocates the processor to Thread then Thread enters into Running State.

If run() method completes successfully then thread enters into Dead State.

above are the basic main states of the Thread. but apart from this it has some condition
through that it goes into different states like waiting state,suspended state,sleeping state.the
full description is below.

Centre for Distance Education 13.10 Acharya Nagarjuna University

start()

Begins the execution of the thread. It invokes the run() method in a new thread of execution.

Thread t = new Thread();

t.start();

run()

ontains the code that constitutes the new thread’s task. This method should be overridden in a
subclass of Thread or in a Runnable object.

public void run() {

 // Thread code here

}

interrupt():

Interrupts the thread, setting its interrupt flag. If the thread is blocked in a method like sleep()
or wait(), it will throw an InterruptedException.

thread.interrupt();

yield()

 If a running thread calls the Thread.yield() method then thread enters into ready state from
running state to give chance to other waiting thread of same priority immediately.

Thread.yield();

join()

If a Thread calls the join() method then it enters into waiting state and if this thread comes out
from waiting state/blocked state then it enters into Ready/Runnable state but here is some
condition to come out from the waiting state is-

 A) If thread completes its own execution.

 B) If time expires.

 C) If waiting thread got interrupted.

thread.join(); // Waits indefinitely for the thread to finish

thread.join(1000); // Waits up to 1 second

sleep()

If running thread calls the sleep() then immediately enters into sleeping state. now thread will
come out of this state to ready state only when-

 A) If time expires.

 B) If sleeping thread got interrupted.

Object Oriented Programming with Java 13.11 Threads

This method can throw an InterruptedException.

Thread.sleep(1000); // Sleeps for 1 second

wait()

If thread calls the wait() method then running thread will enters into waiting state. if this
thread got any notification by method notify()/notifyAll() then it enters into another waiting
state to get lock.so when the thread comes out of waiting state to another waiting state to get
lock is-

A) If waiting thread got notification.
B) If time expires.
C) If waiting thread got interrupted.

Now thread which is in the another waiting state will go to ready state when it get the lock.
synchronized (someObject) {

 while (!condition) {

 someObject.wait(); // Wait until notified or interrupted

 }

}

suspend()

If running thread calls the suspend() method now thread enters into

suspended state and it will comes out form there to ready state only when

it will call the resume() method.

thread.suspend(); // Deprecated method

thread.resume(); // Deprecated method to resume

stop()

If running thread calls the stop() method then immediately enters into dead state.

thread.stop(); // Deprecated method

13.8 INTERRUPTING THREADS

Interrupting threads in Java is a mechanism to signal a thread to stop its execution or to

perform an alternate action. It is particularly useful when you want to terminate a thread

gracefully or handle long-running tasks that might need to be canceled.

Key Methods:

 interrupt(): Signals the thread to interrupt.

 isInterrupted(): Checks if the thread's interrupt flag is set.

 Thread.interrupted(): Checks and clears the interrupt flag.

Centre for Distance Education 13.12 Acharya Nagarjuna University

Example: Interrupting a Thread

public class ThreadInterruptionDemo {

 public static void main(String[] args) {

 // Create a thread that performs a long-running task

 Thread worker = new Thread(() -> {

 try {

 for (int i = 1; i <= 10; i++) {

 System.out.println("Working... Step " + i);

 Thread.sleep(1000); // Simulate a long-running task

 }

 } catch (InterruptedException e) {

 System.out.println("Thread was interrupted! Exiting...");

 return; // Graceful exit

 }

 });

 // Start the thread

 worker.start();

 // Main thread waits for 3 seconds and then interrupts the worker thread

 try {

 Thread.sleep(3000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 worker.interrupt(); // Signal the thread to stop

 System.out.println("Main thread requested interruption.");

 }

}

Output

Working... Step 1

Working... Step 2

Working... Step 3

Object Oriented Programming with Java 13.13 Threads

Main thread requested interruption.

Thread was interrupted! Exiting...

13.9 THREAD PRIORITIES

Thread priorities in Java allow you to control the relative importance of different threads,

helping to optimize the performance of a multi-threaded application. Thread priority is an

integer value that determines the order in which threads are scheduled by the Java Virtual

Machine (JVM). The priority of a thread can influence how much processing time it gets

compared to other threads, although the actual behavior depends on the underlying operating

system's thread scheduler.

Thread Priority Range

In Java, thread priorities are represented as integer values, with the following range:

 MIN_PRIORITY: The lowest priority (value 1).

 NORM_PRIORITY: The default priority (value 5).

 MAX_PRIORITY: The highest priority (value 10).

These values are constants defined in the Thread class:

 Thread.MIN_PRIORITY = 1

 Thread.NORM_PRIORITY = 5

 Thread.MAX_PRIORITY = 10

You can assign a priority value to a thread by using the setPriority(int priority) method of the

Thread class.

You can set the priority of a thread using the setPriority() method:

Thread thread = new Thread();

thread.setPriority(Thread.MAX_PRIORITY); // Set to maximum priority

public class ThreadPriorityExample {

 public static void main(String[] args) {

 // Create two threads with different priorities

 Thread highPriorityThread = new Thread(new Task(), "High Priority Thread");

Centre for Distance Education 13.14 Acharya Nagarjuna University

 Thread lowPriorityThread = new Thread(new Task(), "Low Priority Thread");

 // Set the priorities of the threads

 highPriorityThread.setPriority(Thread.MAX_PRIORITY); // High priority

 lowPriorityThread.setPriority(Thread.MIN_PRIORITY); // Low priority

 // Start both threads

 highPriorityThread.start();

 lowPriorityThread.start();

 }

 // Task that prints the name of the current thread

 static class Task implements Runnable {

 public void run() {

 // Print the name of the thread

 System.out.println(Thread.currentThread().getName() + " is running");

 try {

 // Sleep for a while to simulate work

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

}

Output:

High Priority Thread is running

Low Priority Thread is running

In this example, you would likely see the "High Priority Thread" run first, as it has a higher

priority. However, the exact order is subject to the JVM and the operating system's

scheduling behavior.

13.10 SYNCHRONIZING THREADS

Thread synchronization in Java is a critical concept for preventing data inconsistency and

ensuring that multiple threads can safely access shared resources. When multiple threads try

Object Oriented Programming with Java 13.15 Threads

to access and modify shared data concurrently, it can lead to problems like race conditions,

where the outcome depends on the sequence or timing of the threads' execution.

Synchronization helps avoid these issues by controlling access to the shared resource.

In Java, synchronization can be achieved using the synchronized keyword. This keyword can

be applied in two main ways:

1. Synchronized Methods: You can use the synchronized keyword in the method

declaration to ensure that only one thread can execute that method at any given time.

2. Synchronized Blocks: You can also synchronize specific blocks of code inside a

method, allowing more fine-grained control over synchronization.

 Synchronized Methods

When a method is declared as synchronized, the thread that invokes the method acquires a

lock on the object the method belongs to (or a class lock for static methods). No other thread

can execute any synchronized method on the same object until the lock is released.

Example: Synchronized Method

class Counter {

 private int count = 0;

 // Synchronized method to ensure thread safety

 public synchronized void increment() {

 count++;

 }

 public int getCount() {

 return count;

 }

}

public class SyncMethodExample {

 public static void main(String[] args) throws InterruptedException {

 Counter counter = new Counter();

 // Create two threads that increment the counter

 Thread t1 = new Thread(() -> {

Centre for Distance Education 13.16 Acharya Nagarjuna University

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 Thread t2 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 t1.start();

 t2.start();

 t1.join();

 t2.join();

 System.out.println("Final Count: " + counter.getCount());

 }

}

In this example, the increment() method is synchronized, ensuring that only one thread can

increment the count at a time, preventing data inconsistency. Without synchronization, both

threads could attempt to increment count at the same time, leading to incorrect results.

 Synchronized Blocks

Synchronized blocks provide a more granular approach to synchronization. Instead of

synchronizing the entire method, you can synchronize only a specific part of the code. This

reduces the performance overhead, especially if the critical section is small.

Example: Synchronized Block

class Counter {

 private int count = 0;

 public void increment() {

 // Synchronize only the critical section

 synchronized (this) {

 count++;

Object Oriented Programming with Java 13.17 Threads

 }

 }

 public int getCount() {

 return count;

 }

}

public class SyncBlockExample {

 public static void main(String[] args) throws InterruptedException {

 Counter counter = new Counter();

 // Create two threads that increment the counter

 Thread t1 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 Thread t2 = new Thread(() -> {

 for (int i = 0; i < 1000; i++) {

 counter.increment();

 }

 });

 t1.start();

 t2.start();

 t1.join();

 t2.join();

 System.out.println("Final Count: " + counter.getCount());

 }

}

In this example, the synchronized block is used inside the increment() method. The

synchronization happens only on the critical section of the method, where the shared resource

(count) is modified. This approach can improve performance when you don't need to

synchronize the entire method.

Centre for Distance Education 13.18 Acharya Nagarjuna University

13.11 INTERTHREAD COMMUNICATION

Interthread communication refers to the coordination of multiple threads within a program to

work together effectively. In Java, this concept is achieved using special mechanisms that

allow threads to communicate and synchronize their activities. When multiple threads need to

communicate and share data, interthread communication provides a way to manage the

interactions.

In Java, interthread communication is built around the concepts of waiting, notifying, and

notifying all. The primary mechanism for interthread communication involves the wait(),

notify(), and notifyAll() methods, which are defined in the Object class. All objects in Java

inherently have the ability to communicate between threads.

Key Concepts of Interthread Communication

1. Waiting for a Condition:

o A thread can enter a waiting state using the wait() method. This causes the

thread to release the lock and enter a waiting state until another thread signals

it to wake up.

o The wait() method must be called from within a synchronized block or

method.

2. Notifying Waiting Threads:

o The notify() method is used to wake up one of the threads that are waiting on

the object's lock.

o The notifyAll() method wakes up all the threads that are waiting on the lock of

the object.

3. Thread Cooperation:

o Interthread communication allows threads to cooperate. For example, one

thread may produce data, and another thread may consume it. The producer

thread can signal the consumer thread when it has new data, and the consumer

thread can wait for data to be available.

Using wait(), notify(), and notifyAll()

These methods must be used within a synchronized block because they depend on the

intrinsic lock of the object to work correctly.

 wait(): Causes the current thread to wait until another thread sends a notification (via

notify() or notifyAll()).

 notify(): Wakes up one thread that is waiting on the object.

 notifyAll(): Wakes up all threads that are waiting on the object.

Object Oriented Programming with Java 13.19 Threads

Example: Producer-Consumer Problem

This is a classic example of interthread communication, where one thread (the producer)

produces data, and another thread (the consumer) consumes that data. The producer and

consumer need to synchronize their operations.

class SharedResource {

 private int data;

 private boolean available = false;

 // Producer method

 public synchronized void produce(int data) {

 while (available) {

 try {

 wait(); // Wait until the consumer consumes

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 }

 this.data = data;

 available = true;

 System.out.println("Produced: " + data);

 notify(); // Notify consumer that data is available

 }

 // Consumer method

 public synchronized void consume() {

 while (!available) {

 try {

 wait(); // Wait until the producer produces

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 }

 System.out.println("Consumed: " + data);

 available = false;

 notify(); // Notify producer that data has been consumed

Centre for Distance Education 13.20 Acharya Nagarjuna University

 }

}

public class ProducerConsumerExample {

 public static void main(String[] args) {

 SharedResource resource = new SharedResource();

 // Producer thread

 Thread producer = new Thread(() -> {

 for (int i = 1; i <= 5; i++) {

 resource.produce(i);

 }

 });

 // Consumer thread

 Thread consumer = new Thread(() -> {

 for (int i = 1; i <= 5; i++) {

 resource.consume();

 }

 });

 producer.start();

 consumer.start();

 }

}

class SharedResource {

 private int data;

 private boolean available = false;

 // Producer method

 public synchronized void produce(int data) {

 while (available) {

 try {

 wait(); // Wait until the consumer consumes

Object Oriented Programming with Java 13.21 Threads

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 }

 this.data = data;

 available = true;

 System.out.println("Produced: " + data);

 notify(); // Notify consumer that data is available

 }

 // Consumer method

 public synchronized void consume() {

 while (!available) {

 try {

 wait(); // Wait until the producer produces

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 }

 System.out.println("Consumed: " + data);

 available = false;

 notify(); // Notify producer that data has been consumed

 }

}

public class ProducerConsumerExample {

 public static void main(String[] args) {

 SharedResource resource = new SharedResource();

 // Producer thread

 Thread producer = new Thread(() -> {

 for (int i = 1; i <= 5; i++) {

 resource.produce(i);

 }

 });

Centre for Distance Education 13.22 Acharya Nagarjuna University

 // Consumer thread

 Thread consumer = new Thread(() -> {

 for (int i = 1; i <= 5; i++) {

 resource.consume();

 }

 });

 producer.start();

 consumer.start();

 }

}

Interthread communication is a powerful feature in Java that allows threads to cooperate and

synchronize their operations. By using wait(), notify(), and notifyAll(), threads can

effectively communicate and manage shared resources. This is especially important in

scenarios like the producer-consumer problem where threads depend on each other’s

actions to perform their tasks. Proper synchronization ensures that threads interact correctly

without causing issues like race conditions, deadlocks, or data inconsistency.

13.12 THREAD GROUPS

In Java, Thread Groups provide a way to organize and manage groups of related threads. A

thread group is essentially a container for multiple threads that can be treated as a collective

entity. The primary purpose of thread groups is to enable more efficient thread management,

such as managing thread behaviors, exception handling, and thread priorities.

Thread groups are represented by the ThreadGroup class in Java, and they are often used in

large, complex applications where many threads need to be grouped for easier management.

Key Features of Thread Groups

1. Organization of Threads:

o Thread groups provide a way to group related threads together. This is useful

in applications with multiple components, where each component has its own

set of threads.

2. Thread Management:

Object Oriented Programming with Java 13.23 Threads

o By grouping threads, you can set the priority for all threads in the group or

handle interruptions and exceptions for the group as a whole.

3. Exception Handling:

o Thread groups allow you to handle uncaught exceptions for all threads in the

group. If any thread in the group throws an uncaught exception, the thread

group can take action (e.g., logging, stopping the threads).

4. Controlling Threads:

o Thread groups allow you to control thread behaviors like setting priorities,

listing all threads, checking if threads are alive, and even stopping all threads

in a group (though this is not recommended).

Creating and Using Thread Groups

1. Creating a Thread Group

To create a new thread group, you need to instantiate a ThreadGroup object. You can either

create a thread group with a specific name or specify a parent thread group.

ThreadGroup group1 = new ThreadGroup("Group 1"); // Creating a thread group with a name

 Parent Thread Group: If no parent is specified, the default thread group is the one

associated with the Java virtual machine (JVM). You can create a thread group with a

parent by passing the parent group as a parameter:

ThreadGroup parentGroup = new ThreadGroup("Parent Group");

ThreadGroup childGroup = new ThreadGroup(parentGroup, "Child Group");

2. Adding Threads to a Thread Group

Once a thread group is created, you can add threads to it by passing the thread group to the

constructor of a Thread:

java

Copy code

Thread t1 = new Thread(group1, new Runnable() {

 public void run() {

 System.out.println("Thread in Group 1");

 }

});

t1.start();

Alternatively, you can create threads first and then assign them to a thread group later, though

this is less common.

Centre for Distance Education 13.24 Acharya Nagarjuna University

3. Managing Threads in a Thread Group

Once you have a thread group, you can manage and control the threads within it using several

methods provided by the ThreadGroup class.

 Setting Thread Priorities: You can set a thread priority for all threads in the group

using the setMaxPriority(int priority) method.

group1.setMaxPriority(Thread.NORM_PRIORITY); // Set max priority for the group

 Listing Threads: You can list all the threads in a thread group using the enumerate()

method:

Thread[] threads = new Thread[group1.activeCount()];

group1.enumerate(threads); // Get the threads in the group

for (Thread t : threads) {

 System.out.println(t.getName());

}

 Interrupting Threads: You can interrupt all threads in the group by calling interrupt()

on the group:

group1.interrupt(); // Interrupts all threads in the group

 Checking if a Group is Alive: You can check if any thread in the group is still alive

using the activeCount() method, which returns the number of active threads in the

group.

int count = group1.activeCount(); // Get the active thread count in the group

System.out.println("Active threads: " + count);

Example: Using Thread Groups in Java

Here is an example where we create two thread groups and manage the threads within them:

public class ThreadGroupExample {

 public static void main(String[] args) {

 // Create a parent thread group

 ThreadGroup group1 = new ThreadGroup("Group 1");

 // Create threads in the thread group

 Thread t1 = new Thread(group1, new Runnable() {

 public void run() {

 System.out.println(Thread.currentThread().getName() + " is running in Group 1");

 }

Object Oriented Programming with Java 13.25 Threads

 });

 Thread t2 = new Thread(group1, new Runnable() {

 public void run() {

 System.out.println(Thread.currentThread().getName() + " is running in Group 1");

 }

 });

 // Start threads

 t1.start();

 t2.start();

 // List all threads in Group 1

 Thread[] threads = new Thread[group1.activeCount()];

 group1.enumerate(threads);

 for (Thread thread : threads) {

 System.out.println("Thread in Group 1: " + thread.getName());

 }

 // Set maximum priority for threads in the group

 group1.setMaxPriority(Thread.MAX_PRIORITY);

 // Create a child thread group

 ThreadGroup group2 = new ThreadGroup(group1, "Group 2");

 // Create a thread in Group 2

 Thread t3 = new Thread(group2, new Runnable() {

 public void run() {

 System.out.println(Thread.currentThread().getName() + " is running in Group 2");

 }

 });

 t3.start();

 // Interrupt all threads in Group 1

 group1.interrupt();

 }

}

Centre for Distance Education 13.26 Acharya Nagarjuna University

Output

Thread-0 is running in Group 1

Thread-1 is running in Group 1

Thread in Group 1: Thread-0

Thread in Group 1: Thread-1

Thread-2 is running in Group 2

In this example, we created two thread groups: Group 1 and Group 2. Threads are assigned to

these groups, and the behavior of these threads is managed accordingly. After starting the

threads, we listed all the threads in Group 1 and set the maximum priority for the group.

Important Methods of ThreadGroup

Here are some key methods provided by the ThreadGroup class:

 getName(): Returns the name of the thread group.

 activeCount(): Returns the number of active threads in the group.

 activeGroupCount(): Returns the number of active subgroups.

 interrupt(): Interrupts all threads in the group.

 destroy(): Destroys the thread group and all its threads (note: this method is

deprecated).

 setMaxPriority(int priority): Sets the maximum priority of threads in the group.

Limitations and Considerations

1. Thread Group Destruction: Thread groups can't be destroyed explicitly in modern

Java (using destroy() is deprecated). It’s the JVM's responsibility to clean up thread

groups once all threads within them have finished execution.

2. Thread Safety: Like individual threads, thread groups should be used with caution in

multi-threaded environments. Since thread groups provide centralized control over

threads, there’s potential for conflict if multiple threads are manipulating the group at

once.

3. Deprecated Features: Some features related to thread groups, such as managing thread

group hierarchies and explicit thread group destruction, are deprecated in favor of

using more modern concurrency tools like the java.util.concurrent package.

Thread groups in Java provide a way to organize and manage related threads, offering control

over their priorities, interrupting them, and handling exceptions. While thread groups can

simplify thread management in certain applications, they are not as commonly used in

Object Oriented Programming with Java 13.27 Threads

modern Java applications, where higher-level concurrency utilities from the

java.util.concurrent package are preferred.

13.13 DAEMON THREADS

A daemon thread in Java is a type of thread that runs in the background to perform tasks that

are not critical to the application's main functionality. The key characteristic of a daemon

thread is that it does not prevent the JVM from exiting when the program has finished

executing all non-daemon threads.

Key Features of Daemon Threads:

1. Background Execution:

o Daemon threads are typically used for background tasks such as garbage

collection, monitoring threads, or handling periodic operations like timeouts or

cleanup.

o These threads run continuously as long as the JVM is running, but they do not

keep the JVM alive when all non-daemon threads are terminated.

2. JVM Shutdown:

o The JVM does not wait for daemon threads to complete before it terminates. If

only daemon threads are left running, the JVM will terminate the program,

which is why daemon threads should be used for tasks that can be interrupted

or abandoned.

3. Automatic Termination:

o When all non-daemon threads finish execution, the JVM shuts down, and any

remaining daemon threads are automatically terminated. This makes daemon

threads suitable for tasks that can be stopped abruptly without affecting the

overall program.

How to Create a Daemon Thread

To create a daemon thread in Java, you must call the setDaemon(true) method on a thread

object before it is started. Once the thread is started, its daemon status cannot be changed.

Here is an example demonstrating how to create and use daemon threads:

class DaemonThreadExample extends Thread {

 public void run() {

 while (true) {

 try {

 Thread.sleep(1000); // Simulate some work

Centre for Distance Education 13.28 Acharya Nagarjuna University

 System.out.println("Daemon thread is working...");

 } catch (InterruptedException e) {

 System.out.println("Daemon thread interrupted.");

 }

 }

 }

}

public class Main {

 public static void main(String[] args) {

 // Create a daemon thread

 DaemonThreadExample daemonThread = new DaemonThreadExample();

 daemonThread.setDaemon(true); // Set as daemon thread

 // Start the daemon thread

 daemonThread.start();

 // Main thread sleeps for a while, allowing daemon thread to run

 try {

 Thread.sleep(5000); // Main thread sleeps for 5 seconds

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 System.out.println("Main thread finished execution.");

 }

}

1. Daemon Thread Creation:

o A DaemonThreadExample class extends Thread and overrides the run()

method to simulate a task that continuously prints a message every second.

o The thread is marked as a daemon thread by calling setDaemon(true) before

starting it.

2. Main Thread:

o The main thread sleeps for 5 seconds, allowing the daemon thread to run in the

background.

Object Oriented Programming with Java 13.29 Threads

o After 5 seconds, the main thread completes its execution and the JVM shuts

down.

o Since the daemon thread is still running, it is terminated abruptly when the

JVM exits.

Daemon Thread Lifecycle

 Creation: A thread is created and initially marked as a user thread by default.

 Setting as Daemon: By calling setDaemon(true), a thread can be designated as a

daemon thread. This must be done before the thread is started.

 Running: The daemon thread runs just like a normal thread, performing background

tasks.

 Termination: When all non-daemon threads have finished execution, the JVM will

terminate the program, and daemon threads will be forcefully stopped.

Important Points About Daemon Threads:

1. Set Daemon Before Start: The setDaemon(true) method must be called before the

thread is started. Attempting to change the daemon status after the thread is started

will throw an IllegalThreadStateException.

2. Daemon Thread Terminates Automatically: The JVM does not wait for daemon

threads to finish before exiting. When all non-daemon threads are finished, the JVM

terminates the program, and daemon threads are stopped immediately, even if they

haven't finished their execution.

3. Use with Caution: Since daemon threads are terminated abruptly when the JVM

shuts down, they are typically used for background tasks like garbage collection,

housekeeping tasks, or monitoring services. They should not be used for tasks that

require completion before the program terminates, as they may leave resources

uncleaned or processes incomplete.

4. Non-daemon Threads: In contrast to daemon threads, non-daemon threads (also

known as user threads) must complete their execution before the JVM can terminate.

These threads are used for critical tasks that need to finish execution.

Daemon Thread Example: Garbage Collection

The JVM uses daemon threads for automatic garbage collection. The garbage collector is a

background task that runs in a daemon thread, reclaiming memory from objects that are no

longer reachable. If there are no non-daemon threads left, the JVM will shut down the

application, terminating any remaining daemon threads, including the garbage collector.

Centre for Distance Education 13.30 Acharya Nagarjuna University

Daemon threads are a powerful feature in Java that help manage background tasks without

affecting the program's main functionality. They run in the background and do not prevent

the JVM from shutting down when all non-daemon threads have completed their execution.

While daemon threads are useful for tasks like periodic monitoring, cleanup, and garbage

collection, they should be used carefully, as they can be terminated abruptly when the JVM

exits.

13.14 SUMMARY

The chapter on Java Threads explores the concept of threads and their importance in modern
programming. It begins by contrasting single-tasking, where a single task is executed
sequentially, with multi-tasking, which allows multiple tasks to run concurrently, enhancing
the performance and responsiveness of applications. Threads are lightweight processes that
facilitate multi-tasking in Java by enabling concurrent execution within a program. The
chapter explains various uses of threads, such as performing background operations,
improving application responsiveness, and managing multiple tasks simultaneously. It covers
the two primary ways to create and run threads in Java: by extending the Thread class or
implementing the Runnable interface. It also discusses how to manage the lifecycle of a
thread, including starting and terminating threads, and provides an overview of key thread
class methods, such as start(), run(), sleep(), and join(), which are essential for thread
management and synchronization.

13.15 TECHNICAL TERMS

Deamon thread, Priority, Garbage Collection, Life Cycle

13.16 SELF ASSESSMENT QUESTIONS

Essay questions:

1. What is a thread in Java? Describe the life cycle of a thread with a diagram.

2. Describe two ways to create a thread in Java, including code examples.

3. What are the key methods provided by the Thread class in Java? Describe at least

five methods with examples.

4. How can a thread be terminated in Java? Discuss different ways to stop a thread,

including the use of the interrupt() method.

 Short Answer Questions:

1. How does multi-threading differ from multi-tasking?

2. Name two ways to create a thread in Java.

3. What is a daemon thread in Java?

4. Name the method used to check if a thread is alive.

5. What is the purpose of the join() method in the Thread class?

Object Oriented Programming with Java 13.31 Threads

13.17 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,

McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,

Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,

2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,

2014

AUTHOR: Mrs. Appikatla Pushpa Latha

 LESSON- 14

EVENT HANDLING

OBJECTIVES:

After going through this lesson, you will be able to

 Understand the Concept of Events

 Identify Event Sources

 Learn About Event Listeners

 Understand the Relationship Between Event Sources and Listeners

 Handle Mouse and Keyboard Events

 Utilize Adapter Classes for Simplified Event Handling

STRUCTURE OF THE LESSION:

14.1 Introduction

14.2 Events

14.3 Event Sources

14.4 Event Classes

14.5 Event Listeners

14.6 Relationship between Event sources and Listeners

14.7 Delegation event model

14.8 Semantic and Low-level events

14.9 Examples handling a button click, mouse and keyboard events

14.10 Adapter classes.

14.11 Summary

14.12 Technical Term

14.13 Self-Assessment Question

14.14 Suggested Readings

Centre for Distance Education 14.2 Acharya Nagarjuna University

14.1 INTRODUCTION

In Java, event handling is a fundamental concept that enables user interaction with graphical
user interfaces (GUIs) and other event-driven applications. At the core of event handling are
events, which represent actions or occurrences, such as a button click or mouse movement.
These events are generated by event sources, which are components that detect user actions,
like buttons, text fields, or mouse movements. When an event occurs, it is passed to event
listeners, which are interfaces that define methods to handle specific types of events. The
relationship between event sources and listeners is one of communication, where an event
source sends events to a listener, which then responds by executing appropriate actions. Java
utilizes the delegation event model, where event handling is decoupled from the components
generating the events, allowing more flexibility and maintainability. Events can be
categorized as semantic events, which represent high-level user actions (like a button press),
and low-level events, which represent detailed actions such as mouse movements or key
presses. For instance, handling a button click involves detecting the click event and triggering
the appropriate action, while handling mouse and keyboard events requires more specialized
listeners like MouseListener and KeyListener. Adapter classes, such as MouseAdapter or
KeyAdapter, provide default implementations of listener methods, making event handling
more convenient by allowing developers to override only the methods they need. This event-
driven programming model ensures that applications can respond dynamically to user
interactions.

14.2 EVENT

In Java, events represent the occurrences or actions that happen during the

execution of a program, often triggered by user interactions with the graphical

user interface (GUI) components. These events can include actions like button

clicks, mouse movements, keyboard presses, and other activities that require the

program to respond.

An event in Java is a signal that something has happened, such as:

 A user clicking a button.

 The user pressing a key on the keyboard.

 A mouse movement or button click.

Types of Events

Events can be categorized into semantic and low-level events:

1. Semantic Events:

o These are high-level events that represent user actions, such as

pressing a button, selecting a menu item, or closing a window.

OOP with Java 14.3 Event Handling

o Example: A ButtonClickEvent when a user clicks a button on the

interface.

2. Low-level Events:

o These events represent more granular, detailed actions, such as

mouse movements, key presses, and mouse clicks.

o Example: A MouseEvent when the user moves the mouse or clicks

on a component.

14.3 EVENT SOURCES

In Java, an event source is an object or component that generates events when a

user interacts with it. These components could be graphical user interface (GUI)

elements, such as buttons, text fields, checkboxes, or even non-GUI elements

like timers. The event source is responsible for detecting user actions and

triggering corresponding events that are handled by event listeners.

Role of Event Sources

 Detect User Interaction: Event sources are responsible for detecting user

actions, such as clicks, key presses, or mouse movements.

 Generate Events: When an interaction occurs, the event source creates

an event object that describes the action (e.g., which button was clicked

or which key was pressed).

 Notify Event Listeners: The event source sends the generated event to

the appropriate event listener, which then responds to the event by

executing specific code.

Common Event Sources in Java

Java provides a variety of GUI components that can serve as event sources, and

these components are usually part of the javax.swing or java.awt packages.

Some common event sources include:

1. Buttons (JButton, Button):

o A button is an event source that generates an event when clicked by

the user.

Centre for Distance Education 14.4 Acharya Nagarjuna University

o Example: When the user clicks a button, an ActionEvent is

triggered.

2. Text Fields (JTextField, TextField):

o A text field can generate events such as when the user enters text or

presses the Enter key.

o Example: A KeyEvent is generated when the user presses a key

inside a text field.

3. Check Boxes (JCheckBox, Checkbox):

o Checkboxes are event sources that trigger events when the user

selects or deselects them.

o Example: An ItemEvent is generated when the state of a checkbox

changes.

4. Menus (JMenu, Menu):

o Menus can generate events when a menu item is selected.

o Example: A MenuEvent or ActionEvent is triggered when the user

selects a menu item.

5. Mouse Events (JComponent, Component):

o Various components like panels or buttons can serve as event

sources for mouse-related events such as mouse clicks, movements,

or drags.

o Example: A MouseEvent is generated when the user clicks the

mouse on a component.

6. Window Events (Window, JFrame):

o Components like windows or frames can generate events when a

window is opened, closed, resized, or activated.

o Example: A WindowEvent is generated when a window is closed.

7. Timers (Timer):

o Timers in Java generate action events after a specified time

interval.

OOP with Java 14.5 Event Handling

o Example: A TimerEvent is triggered when the timer reaches the

specified delay.

How Event Sources Work

The work of an event source can be summarized in the following steps:

1. User Interaction: A user interacts with a GUI component. For instance, a

user clicks a button or types in a text field.

2. Event Generation: The event source (e.g., a button or text field)

generates an event that encapsulates information about the user action

(such as the mouse location, the key pressed, or the button clicked).

3. Event Listener Registration: The event source must have event listeners

registered to handle the events it generates. This is done using methods

like addActionListener(), addMouseListener(), or addKeyListener().

4. Event Handling: The event listener method is invoked to handle the

event, typically executing a specific action (e.g., updating the UI,

performing a calculation, etc.).

14.4 EVENT CLASSES

In Java, event classes are used to encapsulate details about the events that occur in an

application. These classes store the information about the user action or system event and are

passed from the event source (such as a button, text field, or mouse) to the event listener for

handling. Event classes are part of the java.awt.event or javax.swing.event package, and they

represent different types of actions that occur during the execution of a program.

Each event class typically extends to the java.util.EventObject class, and they contain

information relevant to the specific type of event, such as which component generated the

event, the type of event, or additional details like the mouse position or the key pressed.

Common Event Classes in Java

Java provides several event classes that correspond to different types of events.

Some commonly used event classes include:

1. ActionEvent:

Centre for Distance Education 14.6 Acharya Nagarjuna University

o Represents a high-level action event, such as clicking a button or

selecting a menu item.

2. MouseEvent:

o Represents events generated by mouse actions such as clicking,

moving, or pressing the mouse button.

3. KeyEvent:

o Represents events triggered by keyboard actions, such as pressing

or releasing a key.

4. WindowEvent:

o Represents events triggered by actions on a window, such as

opening, closing, or resizing a window.

5. FocusEvent:

o Represents events related to component focus, such as when a

component gains or loses focus.

Event classes in Java are integral to the event-handling mechanism,

encapsulating the details of various user actions. They are designed to be passed

from the event source to the event listener, where appropriate actions can be

performed. By understanding and utilizing the appropriate event classes, Java

developers can build responsive applications that react to user interactions

efficiently.

14.5 EVENT LISTENERS

In Java, event listeners have interfaces that define methods to handle specific

types of events. They allow a program to respond to user actions or other events

generated by components such as buttons, text fields, checkboxes, and other

GUI elements. Event listeners are a crucial part of the event-driven

programming model, where the program waits for user interactions (such as

button clicks or keyboard presses) and handles them accordingly.

Event listeners are designed to respond to particular events by providing

methods that are called when those events occur. For example, an

OOP with Java 14.7 Event Handling

ActionListener is triggered when a user clicks a button or presses a menu item,

while a MouseListener is invoked when the user interacts with the mouse.

Common Event Listener Interfaces in Java

Here are some commonly used event listener interfaces in Java:

1. ActionListener:

o Purpose: Listens for action events, such as when a user clicks a

button or selects a menu item.

o Key Method: actionPerformed(ActionEvent e)

2. MouseListener:

 Purpose: Listens for mouse-related events such as mouse clicks,

entering, exiting, and pressing mouse buttons.

 Key Methods: mouseClicked(MouseEvent e),

mousePressed(MouseEvent e), mouseReleased(MouseEvent e),

mouseEntered(MouseEvent e), mouseExited(MouseEvent e)

KeyListener:

 Purpose: Listens for keyboard events such as key presses and releases.

 Key Methods: keyPressed(KeyEvent e), keyReleased(KeyEvent e),

keyTyped(KeyEvent e)

WindowListener:

 Purpose: Listens for window events such as opening, closing, activating,

or deactivating a window.

 Key Methods: windowOpened(WindowEvent e),

windowClosing(WindowEvent e), windowClosed(WindowEvent e),

windowIconified(WindowEvent e), windowDeiconified(WindowEvent

e), windowActivated(WindowEvent e),

windowDeactivated(WindowEvent e)

ItemListener:

 Purpose: Listens for changes in item selection, such as when a checkbox

or radio button is selected or deselected.

Centre for Distance Education 14.8 Acharya Nagarjuna University

 Key Method: itemStateChanged(ItemEvent e)

14.6 RELATIONSHIP BETWEEN EVENT SOURCES AND LISTENERS

The relationship between event sources and listeners is fundamental to the event-handling

mechanism in Java. The event source generates events, while the event listener responds to

those events. The source and listener are loosely coupled, allowing flexibility in how events

are handled. This decoupling also enables reusability, as the same listener can be used with

different event sources. Properly managing this relationship is key to building interactive

and responsive GUI applications in Java.

How the Relationship Works

1. Event Source Generates an Event:

o When a user interacts with a component (e.g., clicking a button or typing in a

text field), the event source generates an event object. For example, if a user

clicks a button, the button generates an ActionEvent.

2. Event Listener Registers with the Event Source:

o To handle the event, the event listener must be registered with the event

source. This is done by calling the addListener() method (such as

addActionListener(), addMouseListener(), etc.) of the event source and

passing the listener object that will handle the event.

3. Event Listener Handles the Event:

o Once registered, the listener is notified when the event occurs. The listener's

method (such as actionPerformed() for an ActionListener, mouseClicked() for

a MouseListener, or keyPressed() for a KeyListener) is invoked, and the

program responds to the event, typically by performing some action or

updating the user interface.

4. Decoupling of Event Source and Listener:

o The relationship between the event source and the event listener is decoupled.

The event source does not need to know anything about what the listener does

when it handles the event. It simply notifies the listener that the event has

occurred. Similarly, the listener does not need to know the specific details of

the event source; it only handles the events it is interested in.

OOP with Java 14.9 Event Handling

14.7 DELEGATION EVENT MODEL

The Delegation Event Model is the primary event-handling mechanism used in Java's

Abstract Window Toolkit (AWT) and Swing for managing events in graphical user interface

(GUI) applications. It is based on the principle of event delegation, where the responsibility

for handling events is "delegated" to event listener objects. The model is designed to simplify

the process of handling user input and interactions in Java applications.

Advantages of the Delegation Event Model

1. Loose Coupling:

o The Delegation Event Model separates the concerns of the event source and

the event listener. The event source only generates events and does not need to

know how the event is handled. The event listener responds to the event

without modifying the event source, promoting loose coupling between

components.

2. Code Reusability:

o The same event listener can be reused for different event sources. For

example, a single ActionListener can handle events from multiple buttons, and

the same MouseListener can be attached to various components.

3. Simplified Event Handling:

o The model simplifies event handling by allowing the developer to focus on

writing event-handling code in the listener methods rather than embedding

complex event-handling logic within the event sources themselves.

4. Event Propagation:

o The model also supports event propagation, where events can be passed to

other listeners or components. This makes it possible to create complex event-

handling mechanisms, such as event filtering or handling.

Example of the Delegation Event Model

import javax.swing.*;

import java.awt.event.*;

public class DelegationEventModelExample {

 public static void main(String[] args) {

 // Create a JFrame

 JFrame frame = new JFrame("Delegation Event Model Example");

Centre for Distance Education 14.10 Acharya Nagarjuna University

 // Create a JButton (Event Source)

 JButton button = new JButton("Click Me");

 // Add an ActionListener to the button (Event Listener)

 button.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 // Event Handler: Handling the event (Button Click)

 System.out.println("Button was clicked!");

 }

 });

 // Set up the frame

 frame.add(button);

 frame.setSize(300, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

}

14.8 SEMANTIC AND LOW-LEVEL EVENTS

In Java, particularly in GUI programming, events can be categorized into semantic events

and low-level events based on the type of information they carry and the context in which

they are used. Understanding these two categories helps developers handle different types of

interactions and manage event-driven programming efficiently.

Semantic events are high-level events that are directly related to user actions or tasks that the

user intends to perform. These events are typically associated with common actions in a

graphical user interface (GUI), such as clicking a button, selecting a menu item, or submitting

a form. They represent logical or meaningful actions that the user wants to perform and are

part of the overall flow of interaction in an application.

Examples of Semantic Events:

 ActionEvent: Triggered when a user clicks a button or selects a menu item. The

ActionListener interface handles this event.

 ItemEvent: Triggered when the state of a checkbox or menu item changes, such as

being selected or deselected. The ItemListener interface handles this event.

OOP with Java 14.11 Event
Handling

 WindowEvent: Triggered when a window is opened, closed, or resized. The

WindowListener interface handles these events.

Low-level Events

Low-level events are more detailed and granular events that represent user interactions at a

much closer level, often capturing basic hardware-level operations or more specific actions

that occur on a component. These events focus on the raw inputs that generate actions, such

as mouse movements, key presses, and mouse button clicks. Low-level events provide more

detailed information about the user's interaction with the system, which can be useful for

tasks that require finer control or monitoring.

Examples of Low-level Events:

 MouseEvent: Captures events related to mouse actions, such as mouse clicks, mouse

movements, and mouse dragging. Handled by the MouseListener and

MouseMotionListener interfaces.

 KeyEvent: Captures events related to keyboard actions, such as key presses and key

releases. Handled by the KeyListener interface.

 FocusEvent: Captures events related to changes in the focus of a component, such as

gaining or losing focus. Handled by the FocusListener interface.

Table 14.1 Comparison Between Semantic and Low-level Events

Aspect Semantic Events Low-level Events

Level of

Abstraction

High-level events representing

user actions.

Low-level events capturing detailed input.

Event Type Typically related to user actions

(e.g., button click, menu

selection).

Related to basic input (e.g., mouse

movements, key presses).

Examples ActionEvent, ItemEvent,

WindowEvent.

MouseEvent, KeyEvent, FocusEvent.

Use Case For handling high-level tasks like

executing commands or

navigating.

For capturing fine-grained user interactions,

such as tracking mouse movement or detecting

key presses.

Event Listener Common listeners like

ActionListener, ItemListener.

Low-level listeners like MouseListener,

KeyListener, FocusListener.

Centre for Distance Education 14.12 Acharya Nagarjuna University

14.9 EXAMPLES HANDLING A BUTTON CLICK, HANDLING MOUSE AND

KEYBOARD EVENTS

In Java, events such as button clicks, mouse actions, and keyboard inputs are typically

handled using listeners. Below are examples demonstrating how to handle each of these

events in a simple Java application.

 Handling a Button Click (ActionEvent)

A button click is one of the most common user interactions in a GUI application. The event

generated by clicking a button is an ActionEvent.

Example Code (Button Click - ActionEvent):

import javax.swing.*;

import java.awt.event.*;

public class ButtonClickExample {

 public static void main(String[] args) {

 // Create a JFrame

 JFrame frame = new JFrame("Button Click Example");

 // Create a JButton

 JButton button = new JButton("Click Me!");

 // Add ActionListener to handle button click

 button.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 // Handling the button click event

 JOptionPane.showMessageDialog(frame, "Button was clicked!");

 }

 });

 // Set up the frame layout

 frame.add(button);

 frame.setSize(300, 200);

OOP with Java 14.13 Event
Handling

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

}

 The ActionListener is added to the JButton (button).

 When the button is clicked, the actionPerformed() method is called.

 A dialog is shown using JOptionPane.showMessageDialog() to notify the user that the

button was clicked.

 Handling Mouse Events (MouseEvent)

Mouse events in Java, such as clicks or movement, are handled by implementing a

MouseListener or MouseMotionListener. Below is an example of handling a mouse click

event using MouseListener.

Example Code (Mouse Click - MouseEvent):

import javax.swing.*;

import java.awt.event.*;

public class MouseEventExample {

 public static void main(String[] args) {

 // Create a JFrame

 JFrame frame = new JFrame("Mouse Event Example");

 // Create a JLabel

 JLabel label = new JLabel("Click anywhere on the screen");

 // Add MouseListener to handle mouse clicks

 label.addMouseListener(new MouseAdapter() {

 @Override

 public void mouseClicked(MouseEvent e) {

 // Handling mouse click event

 System.out.println("Mouse clicked at coordinates: " + e.getX() + ", " + e.getY());

 }

 });

 // Set up the frame layout

 frame.add(label);

Centre for Distance Education 14.14 Acharya Nagarjuna University

 frame.setSize(300, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

}

 A MouseListener is added to the JLabel (label).

 When the user clicks anywhere on the label, the mouseClicked() method is invoked,

and it prints the mouse click coordinates to the console.

 Handling Keyboard Events (KeyEvent)

Keyboard events are captured using the KeyListener interface, which detects when keys are

pressed or released. Here’s how to handle keyboard events.

Example Code (Key Press - KeyEvent):

import javax.swing.*;

import java.awt.event.*;

public class KeyEventExample {

 public static void main(String[] args) {

 // Create a JFrame

 JFrame frame = new JFrame("Keyboard Event Example");

 // Create a JTextField to capture keyboard input

 JTextField textField = new JTextField(20);

 // Add KeyListener to handle key presses

 textField.addKeyListener(new KeyAdapter() {

 @Override

 public void keyPressed(KeyEvent e) {

 // Handling the key press event

 System.out.println("Key pressed: " + e.getKeyChar());

 }

 @Override

 public void keyReleased(KeyEvent e) {

 // Handling key release event

 System.out.println("Key released: " + e.getKeyChar());

 }

 });

OOP with Java 14.15 Event
Handling

 // Set up the frame layout

 frame.add(textField);

 frame.setSize(300, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

}

 The KeyListener is added to a JTextField (textField).

 The keyPressed() method is triggered when a key is pressed, and the keyReleased()

method is called when the key is released.

 The key character is printed to the console to indicate which key was pressed or

released.

14.10 ADAPTER CLASSES

n Java, adapter classes are used to simplify event handling by providing default

implementations for the methods of an event listener interface. These classes are

particularly useful when you only need to implement a subset of the methods in

an interface, avoiding the need to implement all the methods, many of which

may not be needed in a specific scenario.

Java provides several adapter classes that implement the listener interfaces

with empty method bodies, allowing you to override only the methods that you

are interested in. These adapter classes are part of the Java AWT and Swing

libraries.

Purpose of Adapter Classes

 Simplification: They simplify the code by eliminating the need to

provide empty method implementations for the unused methods of an

interface.

 Code Readability: By using an adapter, you only need to implement the

methods you care about, improving the readability and maintainability of

the code.

Centre for Distance Education 14.16 Acharya Nagarjuna University

 Reduced Boilerplate: Without adapters, you would have to implement

all methods in the listener interfaces, even if some of them are not

needed.

Common Adapter Classes in Java

Here are some of the commonly used adapter classes in Java:

 MouseAdapter: Simplifies mouse event handling (e.g., MouseListener,

MouseMotionListener).

 KeyAdapter: Simplifies keyboard event handling (e.g., KeyListener).

 WindowAdapter: Simplifies window event handling (e.g.,

WindowListener).

 FocusAdapter: Simplifies focus event handling (e.g., FocusListener).

 ComponentAdapter: Simplifies component event handling (e.g.,

ComponentListener).

Example of Using an Adapter Class

MouseAdapter Example

In the case of mouse events, the MouseAdapter class can be used to simplify

handling different mouse events, like clicks and movements.

Here is an example of using MouseAdapter to handle mouse clicks:

import javax.swing.*;

import java.awt.event.*;

public class MouseAdapterExample {

 public static void main(String[] args) {

 // Create a JFrame

 JFrame frame = new JFrame("Mouse Adapter Example");

 // Create a JLabel

 JLabel label = new JLabel("Click anywhere on the frame");

 // Use MouseAdapter to handle mouse events

 label.addMouseListener(new MouseAdapter() {

 @Override

OOP with Java 14.17 Event
Handling

 public void mouseClicked(MouseEvent e) {

 // Handling mouse click event

 System.out.println("Mouse clicked at position: " + e.getX() + ", " +

e.getY());

 }

 });

 // Set up the frame layout

 frame.add(label);

 frame.setSize(300, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

}

 The MouseAdapter class is used to override only the mouseClicked()

method, which is triggered when the user clicks on the JLabel.

 The other methods in the MouseListener interface (like mousePressed(),

mouseReleased(), mouseEntered(), and mouseExited()) are not required

for this example, so we don’t need to implement them.

Example of Using KeyAdapter

Similarly, the KeyAdapter class can be used for keyboard event handling when

you don't need to implement all the methods of the KeyListener interface.

import javax.swing.*;

import java.awt.event.*;

public class KeyAdapterExample {

 public static void main(String[] args) {

 // Create a JFrame

 JFrame frame = new JFrame("Key Adapter Example");

 // Create a JTextField

 JTextField textField = new JTextField(20);

Centre for Distance Education 14.18 Acharya Nagarjuna University

 // Use KeyAdapter to handle key events

 textField.addKeyListener(new KeyAdapter() {

 @Override

 public void keyPressed(KeyEvent e) {

 // Handling key press event

 System.out.println("Key pressed: " + e.getKeyChar());

 }

 });

 // Set up the frame layout

 frame.add(textField);

 frame.setSize(300, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

}

 The KeyAdapter class is used to handle the keyPressed() method, which

is triggered when the user presses a key in the JTextField.

 The keyReleased() and keyTyped() methods are not implemented, as they

are not needed for this specific functionality.

Advantages of Using Adapter Classes

1. Reduced Boilerplate Code: Adapter classes eliminate the need for

implementing every method in an interface, making the code shorter and

more manageable.

2. Simplified Event Handling: When dealing with multiple events from the

same listener type (e.g., mouse events), adapter classes allow you to

implement only the specific methods you need without being forced to

define unused methods.

3. Improved Readability: By focusing only on the relevant event handling

methods, adapter classes make the code more readable and less cluttered.

OOP with Java 14.19 Event
Handling

4. Maintainability: With fewer lines of code and only relevant methods

being implemented, maintenance becomes easier.

Adapter classes in Java are a powerful feature that simplifies the process of

handling events in GUI applications. By using adapter classes like

MouseAdapter, KeyAdapter, and others, you can reduce the amount of

boilerplate code required for implementing event listeners, allowing you to

focus only on the specific event handling methods that are relevant to your

application.

14 .11 SUMMARY

Event handling in Java is a fundamental concept used to respond to user interactions with

graphical user interfaces (GUIs). It involves several key components, such as events, which

are the actions triggered by user input, and event sources, which are the components (like

buttons, mouse, or keyboard) that generate these events. Event classes define the details of

the events, while event listeners are used to detect and respond to these events. The

relationship between event sources and listeners is built on the delegation event model,

where sources generate events, and listeners handle them. Events can be classified into

semantic and low-level events, with semantic events representing high-level user actions

(like button clicks) and low-level events capturing more detailed user input (like mouse

movements or key presses). Adapter classes are used to simplify event handling by

providing default implementations for listener interfaces, allowing developers to implement

only the methods they need. Examples of event handling include handling button clicks

through action events, mouse events with MouseListener, and keyboard events with

KeyListener. This structure allows Java applications to effectively manage user interactions

in a modular and organized way.

14.12 TECHNICAL TERMS

Event , Event Sources, Listener, Adapter, Mouse Event, Action Event ,Key Event

14.13 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the concept of events, event sources, and event classes in Java with

examples, and describe how they are used in event handling.

2. Describe the relationship between event sources and listeners in Java. How does

the Delegation Event Model facilitate this relationship?

Centre for Distance Education 14.20 Acharya Nagarjuna University

3. Compare and contrast semantic and low-level events in Java. Provide examples of

each type and explain their significance in event handling.

4. Provide an example of handling a button click event in Java using ActionListener,

and explain the flow of event handling.

5. Discuss how mouse events and keyboard events are handled in Java. Provide code

examples for each and explain the differences in handling them.

 Short Answer Questions:

1. What is the difference between semantic and low-level events in Java?

2. How does the Delegation Event Model work in Java?

3. What is the role of an event listener in Java event handling?

4. How are mouse events handled in Java? Provide an example.

5. What is the purpose of adapter classes in Java event handling?

14.14 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,

McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,

Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,

2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,

2014

AUTHOR: Mrs. Appikatla Pushpa Latha

 LESSON- 15

APPLETS

OBJECTIVES:

After going through this lesson, you will be able to

 Understand the Inheritance Hierarchy for Applets:

 Differentiate Between Applets and Applications:

 Understand the Life Cycle of an Applet:

 Learn to Develop and Test Applets:

STRUCTURE OF THE LESSION:

15.1 Introduction

15.2 Applet

15.3 Inheritance hierarchy for applets

15.4 Differences Between Applets and Applications

15.5 Life Cycle of An Applet

15.6 Developing applets and testing

15.7 Passing Parameters to Applet

15.8 Applet Security Issues.

15.9 Summary

15.10 Technical Term

15.11 Self-Assessment Question

15.12 Further Readings

Centre for Distance Education 15.2 Acharya Nagarjuna University

15.1 INTRODUCTION

Applets are small Java programs designed to be embedded in web pages and run in a web
browser. They extend from the Applet class, which is part of the java.applet package, and
inherit various methods to handle their behavior. The inheritance hierarchy for applets
involves the Applet class as the base, from which other applet classes are derived. Unlike
standalone Java applications, applets are executed in a browser or applet viewer, and they
rely on specific lifecycle methods to manage their execution. These methods include init(),
which initializes the applet, start(), which starts the applet’s execution, stop(), which pauses
it, and destroy(), which cleans up resources before the applet is removed. Developing and
testing applets requires using an applet viewer or browser to ensure correct behavior and
integration into the web page. Additionally, applets can receive parameters passed from
HTML pages, which are accessed using the getParameter() method. However, due to security
concerns, applets are subject to strict security restrictions, preventing access to sensitive
system resources. These security issues are managed through Java’s sandbox model, which
limits applet actions to protect the user’s machine from potential malicious behavior.

15.2 APPLET

An applet in Java is a small application designed to be embedded within a web

page and run in a web browser. Applets are primarily used to provide interactive

features on websites, such as animations, games, or user interfaces. Unlike

standalone Java applications, which are executed directly from the command

line, applets run inside a web browser or applet viewer, and they rely on specific

methods and life cycle management for execution.

Key Features of Applets:

1. Execution Environment:

o Applets are executed within a Java-enabled web browser or an applet

viewer. They run as part of a webpage, which means they can interact with

HTML content and be used for web-based applications.

2. No Main Method:

o Unlike standalone Java applications, applets do not have a main() method.

Instead, applets use a set of predefined methods that control their life cycle,

such as init(), start(), stop(), and destroy().

OOP with Java 15.3 Applets

3. Security Model:

o Applets are executed in a restricted environment (known as a sandbox) to

prevent them from accessing sensitive system resources. This ensures the

applet does not perform malicious activities such as file manipulation or

network access.

15. 3 INHERITANCE HIERARCHY FOR APPLETS

In Java, applets are part of the Java java.applet package and follow a well-

defined inheritance hierarchy. The inheritance structure for applets is designed

to provide basic functionality and behavior that can be extended to create

custom applets.

Here's a breakdown of the key classes in the applet inheritance hierarchy:

1. Object Class (Root Class)

 Location: java.lang.Object

 The root class of every Java class, including applets, is Object. All Java

classes inherit from Object, so any applet class will also inherit methods

like equals(), hashCode(), toString(), etc., from this class.

2. Applet Class (Base Class for Applets)

 Location: java.applet.Applet

 The core class for creating applets is the Applet class, which extends the

Panel class (from the AWT library). This class provides the basic

framework for applet functionality. It includes methods such as init(),

start(), stop(), and destroy(), which manage the life cycle of the applet.

o Key Methods:

 init(): Called when the applet is first loaded.

 start(): Called when the applet is started or resumed.

 stop(): Called when the applet is stopped or suspended.

 destroy(): Called when the applet is destroyed.

3. Panel Class (AWT Component)

 Location: java.awt.Panel

Centre for Distance Education 15.4 Acharya Nagarjuna University

 The Applet class extends Panel from the Abstract Window Toolkit

(AWT). The Panel class is a container used to group components like

buttons, labels, and text fields. Since applets are designed to run inside a

window, Panel provides the visual layout and components needed for

applet-based applications.

4. Container Class (AWT Container)

 Location: java.awt.Container

 The Panel class, as a container, extends from Container. The Container

class allows the arrangement of multiple components within the same

window, enabling the applet to manage and display GUI elements.

5. Component Class (AWT Base for All Visual Elements)

 Location: java.awt.Component

 Component is the base class for all AWT components that handle user

interaction or display. All visual components, such as buttons, text fields,

and labels, are derived from Component, which Container (and

consequently Panel) also extends.

6. JApplet Class (Swing Applet)

 Location: javax.swing.JApplet

 The JApplet class is part of the Swing library and is an extension of the

Applet class, specifically for creating applets with Swing components

(like JButton, JLabel, etc.). It is used when you want to create more

advanced user interfaces with Swing rather than AWT components.

o Difference from Applet: While Applet uses AWT components,

JApplet allows for the use of Swing components for more modern

UI elements.

 Applet is the base class for traditional applets, providing the fundamental

methods for initialization and execution.

 JApplet provides enhanced capabilities through Swing, which are more

flexible and capable of creating modern user interfaces.

OOP with Java 15.5 Applets

 Both classes provide a starting point for creating Java applets, with

JApplet offering more modern UI capabilities compared to the older

Applet class.

This hierarchy allows developers to extend the functionality of applets by

creating subclasses that inherit the applet life cycle methods and customize them

to handle specific user interactions or interface designs.

15.4 DIFFERENCES BETWEEN APPLETS AND APPLICATIONS

Table 15.1 summarizing the differences between applets and applications

Feature Applet Application

Execution

Environment

Runs in a web browser or

applet viewer

Runs independently on a Java

Virtual Machine (JVM)

Entry Point No main() method; uses life

cycle methods (init(), start(),

stop(), destroy())

Has a main() method as the

entry point for execution

User Interface Embedded within a web

page, using AWT or Swing

components

Can have full control over the

UI, standalone windows

Life Cycle Managed by the browser or

applet viewer

Controlled by the main()

method and program flow

Security Runs in a restricted

"sandbox" environment to

limit access to system

resources

Has fewer security restrictions,

can access system resources

with appropriate permissions

Deployment Deployed in HTML pages

using <applet> tag, requires

a Java-enabled browser

Distributed as standalone

applications (e.g., JAR files,

executable files)

Usage Primarily used for Used for standalone

Centre for Distance Education 15.6 Acharya Nagarjuna University

interactive content in web

pages (e.g., games, forms)

applications, including desktop

software, server-side apps, etc.

Browser

Dependency

Requires a Java-enabled

browser with an applet

viewer or plugin

No browser required, can be run

directly from the command line

or IDE

Performance Limited performance due to

browser constraints and

security sandbox

Can utilize full system

resources and hardware, leading

to better performance

Interaction

with System

Limited system access due

to security restrictions

Can interact with the local file

system, network, and hardware

(with permissions)

15.5 LIFE CYCLE OF AN APPLET

The life cycle of an applet in Java is defined by a set of methods that the applet container

(usually a web browser or an applet viewer) calls during its life span. These methods control

the applet's behavior from the time it is initialized until it is destroyed. An applet does not

have a main() method like a typical Java application. Instead, it follows a specific life cycle

that allows it to interact with the user, display content, and handle events in a controlled

environment.

The key methods involved in the applet life cycle are:

 Fig 15.1 Life Cycle of Applet

OOP with Java 15.7 Applets

1. init() Method:

 Purpose: This is the first method that is called when an applet is loaded. It is used to

initialize the applet's resources, such as setting up the user interface, establishing

network connections, or loading configuration files.

 When is it called?: The init() method is called once, when the applet is first loaded

into memory by the applet container (i.e., the browser or applet viewer).

 Common Usage:

o Set up the applet’s user interface.

o Initialize any resources the applet needs.

public void init() {

 // Initialization code here

 System.out.println("Applet initialized");

}

2. start() Method:

 Purpose: The start() method is called after the init() method. It is called whenever the

applet is started or resumed after being paused (for example, when the user returns to

a page containing the applet). This method is used for tasks like starting animations or

any continuous behavior that the applet should begin when it becomes active.

 When is it called?: After init() is called, and every time the applet’s page is revisited

or the browser refreshes.

 Common Usage:

o Start animations or threads.

o Begin tasks that should run while the applet is active.

java

Copy code

public void start() {

 // Start any animation or thread

 System.out.println("Applet started");

}

3. stop() Method:

 Purpose: The stop() method is called when the applet is no longer active, for

example, when the user navigates away from the page containing the applet, or the

applet is explicitly stopped. This method is used to stop activities such as animations,

threads, or other ongoing processes that should be halted when the applet is not active.

Centre for Distance Education 15.8 Acharya Nagarjuna University

 When is it called?: When the applet is paused or the user leaves the page.

 Common Usage:

o Stop animations or threads.

o Release resources or halt activities that should not continue when the applet is

inactive.

public void stop() {

 // Stop any ongoing tasks like animation

 System.out.println("Applet stopped");

}

4. destroy() Method:

 Purpose: The destroy() method is called when the applet is about to be unloaded from

memory, usually when the user navigates away from the applet's page or the applet

viewer closes. This method is used to clean up any resources that the applet might

have allocated, such as closing files or terminating network connections.

 When is it called?: Just before the applet is destroyed or removed from memory.

 Common Usage:

o Close network connections.

o Release resources such as files or database connections.

o Clean up any remaining threads or tasks.

public void destroy() {

 // Clean up resources here

 System.out.println("Applet destroyed");

}

Table Summary of Applet Life Cycle Methods

Method Purpose When Called
init() Initializes the applet (sets up UI, resources) Once when the applet is loaded
start() Starts or resumes operations like animations,

threads, or interactions
After init(), every time applet
becomes visible

stop() Pauses operations (stops animations,
threads)

When applet is no longer visible or
becomes inactive

destroy() Cleans up resources before unloading the
applet

When applet is destroyed or
removed from memory

OOP with Java 15.9 Applets

15.6 DEVELOPING APPLETS AND TESTING

Developing applets involves creating a Java program that extends the java.applet.Applet or

javax.swing.JApplet class (for Swing-based GUIs). These applets are embedded in HTML

pages and executed within a Java-enabled browser or applet viewer. Testing applets ensures

they function correctly across different platforms and browsers.

 Steps for Developing an Applet

1. Set Up the Development Environment:

o Install the Java Development Kit (JDK) for compiling and running applets.

o Use an Integrated Development Environment (IDE) like Eclipse, IntelliJ

IDEA, or NetBeans for writing and debugging code.

2. Create the Applet Class:

o Extend the Applet or JApplet class.

o Override the life cycle methods (init(), start(), stop(), destroy()) as required.

3. Write the Applet Code:

o Add user interface components (if needed) using AWT or Swing.

o Implement event-handling mechanisms.

o Use the applet's Graphics object for custom drawing, if applicable.

4. Embed the Applet in an HTML Page:

o Use the <applet> or <object> tag in an HTML file to embed the applet.

Example HTML Code:

<html>

<body>

 <applet code="MyApplet.class" width="300" height="200">

 </applet>

</body>

</html>

5. Compile the Applet:

o Compile the applet source code using the javac command:

 javac MyApplet.java

6. Run the Applet:

o Use an applet viewer or browser to run the applet:

 appletviewer MyApplet.html

Centre for Distance Education 15.10 Acharya Nagarjuna University

 Testing Applets

Testing applets involves verifying their behavior in various environments and under different

conditions.

1. Testing in Applet Viewer:

o Use the appletviewer tool provided with the JDK to run the applet in a sandboxed

environment.

o Check the applet's graphical interface, responsiveness, and functionality.

2. Testing in Browsers:

o Embed the applet in an HTML page and test it in different browsers that support

Java applets.

o Verify browser-specific behaviors and compatibility issues.

3. Testing for Security:

o Ensure the applet adheres to security restrictions, especially for network access

and file handling.

o Test signed and unsigned applets for permissions.

4. Cross-Platform Testing:

o Run the applet on multiple operating systems (Windows, macOS, Linux) to verify

compatibility.

o Ensure consistent behavior across different screen resolutions and sizes.

5. Stress and Performance Testing:

o Test the applet under high load conditions to ensure stability.

o Measure performance to verify that the applet runs efficiently.

Sample Applet Code

Below is a simple applet that displays a message:

import java.applet.Applet;

import java.awt.Graphics;

public class MyApplet extends Applet {

 public void init() {

 System.out.println("Applet initialized");

 }

OOP with Java 15.11 Applets

 public void start() {

 System.out.println("Applet started");

 }

 public void paint(Graphics g) {

 g.drawString("Hello, Applet!", 50, 50);

 }

 public void stop() {

 System.out.println("Applet stopped");

 }

 public void destroy() {

 System.out.println("Applet destroyed");

 }

}

Execution and Testing

1. Compile the Applet:

 javac MyApplet.java

2. Create an HTML File:

html

Copy code

<html>

<body>

 <applet code="MyApplet.class" width="300" height="200">

 </applet>

</body>

</html>

3. Run Using Applet Viewer:

 appletviewer MyApplet.html

4. Browser Testing:

o Open the HTML file in a Java-enabled browser.

o Verify the applet's graphical output and life cycle behavior.

Centre for Distance Education 15.12 Acharya Nagarjuna University

15.7 PASSING PARAMETERS TO APPLETS

Java applets can accept parameters from the HTML page in which they are embedded. These

parameters are specified using the <param> tag in the HTML file and can be accessed within

the applet using the getParameter() method. This feature allows applets to be more dynamic

and configurable based on user input or external settings.

Steps to Pass Parameters to an Applet

1. Define Parameters in HTML:

o Use the <param> tag within the <applet> tag to specify the parameter name and

value.

html

Copy code

<html>

<body>

 <applet code="MyApplet.class" width="300" height="200">

 <param name="param1" value="Hello, Applet!">

 <param name="param2" value="42">

 </applet>

</body>

</html>

2. Access Parameters in the Applet:

o Use the getParameter(String name) method in the applet to retrieve parameter

values.

Example:

import java.applet.Applet;

import java.awt.Graphics;

public class MyApplet extends Applet {

 private String message;

 private int number;

 public void init() {

 // Retrieve parameters from the HTML page

 message = getParameter("param1");

 String numStr = getParameter("param2");

OOP with Java 15.13 Applets

 number = (numStr != null) ? Integer.parseInt(numStr) : 0;

 }

 public void paint(Graphics g) {

 g.drawString("Message: " + message, 20, 50);

 g.drawString("Number: " + number, 20, 70);

 }

}

3. Compile and Test:

o Compile the applet:

 javac MyApplet.java

o Test using the appletviewer:

 appletviewer applet.html

Example Explanation

HTML File:

 Defines two parameters:

o param1 with the value "Hello, Applet!".

o param2 with the value "42".

Applet Code:

 Retrieves the parameters using getParameter().

 The message parameter is stored as a String.

 The param2 parameter is converted to an integer using Integer.parseInt().

Output:

 The applet displays:

makefile

Copy code

Message: Hello, Applet!

Number: 42

Use Cases for Passing Parameters

1. Dynamic Content:

o Applets can adapt their behavior based on parameter values (e.g., displaying

user-specific messages or settings).

2. Configuration Settings:

Centre for Distance Education 15.14 Acharya Nagarjuna University

o Parameters can provide initial values like color themes, fonts, or file paths.

3. Interactivity:

o Parameters allow applets to take inputs from the embedding HTML page for

dynamic interactions.

Points to Remember

 Null Check: Always check if the parameter is null before using it to avoid

NullPointerException.

 Data Types: Parameters are retrieved as strings; you must convert them to the

appropriate data type (e.g., integer or float) if necessary.

 Security: Applets cannot access system resources unless they are signed, so

parameters cannot provide file paths or sensitive information unless the applet is

trusted.

By passing parameters, applets become flexible and capable of serving diverse purposes in

different contexts.

15.8 APPLET SECURITY ISSUES

Java applets are executed in a restricted environment called the "sandbox" to ensure the

security of the user's system. This sandbox imposes strict limitations on what an applet can

do, preventing it from accessing system resources that could compromise the user's security

or privacy. Despite these measures, there are potential security issues and challenges

associated with applets.

1. Sandbox Restrictions

 Purpose: The sandbox ensures that applets:

o Cannot access the local file system (e.g., read or write files).

o Cannot connect to any network location other than the server from which they

were loaded.

o Cannot execute native code or make system-level changes.

 Limitation: These restrictions may limit the functionality of legitimate applets.

2. Unsigned vs. Signed Applets

 Unsigned Applets:

o Restricted to the sandbox and cannot perform sensitive operations.

o Typically safe but limited in functionality.

 Signed Applets:

o Signed with a digital certificate to verify their authenticity and request

permission to bypass sandbox restrictions.

OOP with Java 15.15 Applets

o Can access local files, network resources, and perform other privileged

operations if the user grants permission.

o Risk: Malicious signed applets may exploit granted permissions to harm the

system.

3. Common Security Risks

1. Malicious Code Execution:

o A compromised or malicious applet may execute harmful operations if signed

and granted permissions by the user.

2. Network Exploitation:

o Applets can communicate with the server they were loaded from, potentially

leading to unauthorized data transfer or Distributed Denial of Service (DDoS)

attacks.

3. Code Injection:

o Vulnerable applets can be exploited by attackers to execute arbitrary code on

the user's machine.

4. Man-in-the-Middle Attacks:

o Without proper encryption, applet data can be intercepted during transmission,

leading to data breaches.

5. Outdated Security Measures:

o Older Java versions may have unpatched vulnerabilities that can be exploited

by attackers.

4. Security Features in Applets

To mitigate these risks, Java provides robust security mechanisms:

 Code Signing:

o Applets can be signed with a trusted certificate to verify their origin and

integrity.

 Permissions:

o Users can allow or deny permissions to signed applets based on trust level.

 Security Manager:

o The Java Security Manager enforces sandbox rules and prevents unauthorized

operations.

 Classloader:

o Applets are loaded through a custom class loader, ensuring that untrusted

applet code cannot interfere with system-level classes.

Centre for Distance Education 15.16 Acharya Nagarjuna University

 Secure Communication:

o Applets can use SSL/TLS for secure data transmission.

5. Applet Security Policies

 Default Policy:

o Unsigned applets are confined to the sandbox with minimal access to system

resources.

 Custom Policies:

o Developers or administrators can define custom security policies to allow or

restrict specific applet operations.

6. Recommendations for Safe Applet Use

1. Update Java Regularly:

o Use the latest version of Java to ensure all known vulnerabilities are patched.

2. Avoid Untrusted Sources:

o Only run applets from trusted websites or developers.

3. Verify Digital Signatures:

o Ensure that signed applets are verified by a trusted certificate authority.

4. Educate Users:

o Inform users about granting permissions to applets and the associated risks.

5. Minimize Dependencies on Applets:

o Use modern web technologies (like JavaScript and HTML5) as alternatives to

applets, since browser support for applets is declining.

Fig 15.2 Recommendations for Safe Applet Use

OOP with Java 15.17 Applets

15.9 SUMMARY

Applets have been a significant feature in Java, enabling dynamic and interactive content

within web pages. Their inheritance hierarchy illustrates the robust object-oriented design

of Java, while their life cycle methods (init(), start(), stop(), and destroy()) provide a

structured way to manage applet execution. The differences between applets and

applications highlight the unique, browser-based use case of applets compared to standalone

programs. Developing and testing applets involves embedding them in HTML, configuring

parameters, and ensuring compatibility across platforms. Passing parameters to applets makes

them adaptable to different scenarios, enhancing interactivity and flexibility. However,

security issues, such as sandbox restrictions and risks associated with signed applets,

underline the importance of secure coding and user awareness. While applets have largely

been replaced by modern technologies, understanding their architecture and principles offers

valuable insights into Java programming and legacy systems.

15.10 TECHNICAL TERMS

Event , Event Sources, Listener, Adapter, Mouse Event, Action Event ,Key Event

15.11 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the inheritance hierarchy of applets in Java. Provide an example to illustrate.

2. Discuss the life cycle of an applet with a detailed explanation of each method (init(),

start(), stop(), destroy()).

3. Describe the process of developing and testing an applet, including writing HTML

code to embed the applet.

4. How can parameters be passed to an applet? Write a program to demonstrate passing

parameters using the <param> tag.

5. What are the common security issues in applets? How does Java address these issues

to ensure applet safety?

Short Answer Questions:

1. What is an applet in Java?

2. List the four key methods of an applet's life cycle.

3. How do applets differ from standalone Java applications?

4. What is the purpose of the getParameter() method in applets?

5. Mention two common applet security restrictions.

Centre for Distance Education 15.18 Acharya Nagarjuna University

15.12 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,

McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,

Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,

2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,

2014

AUTHOR: Mrs. Appikatla Pushpa Latha

 LESSON- 16

GUI PROGRAMMING WITH JAVA

OBJECTIVES:

After going through this lesson, you will be able to

 Understand the AWT and Swing Frameworks:

 Differentiate Between Swing and AWT:

 Explore Hierarchies and Containers:

 Implement Swing Components:

STRUCTURE OF THE LESSION:

16.1 Introduction

16.2 The AWT class hierarchy

16.3 Introduction to Swing

16.4 Swing vs. AWT

16.5 MVC architecture

16.6 Hierarchy for Swing components

16.7 Top-level containers

16.8 A Simple Swing Application

16.9 Summary

16.10 Technical Term

16.11 Self-Assessment Questions

16.12 Further Readings

Centre for Distance Education 16.2 Acharya Nagarjuna University

16.1 INTRODUCTION

Graphical User Interface (GUI) programming in Java is an essential aspect of creating user-

friendly applications. Java provides two primary frameworks for GUI development: Abstract

Window Toolkit (AWT) and Swing. The AWT class hierarchy forms the foundation,

offering basic components and platform-dependent features. Swing, introduced later, builds

upon AWT, offering a richer set of components, a lightweight architecture, and support for

the Model-View-Controller (MVC) design pattern, enabling better separation of logic and

UI. Swing includes a wide variety of components organized in a hierarchical structure, with

top-level containers like JFrame, JApplet, JWindow, and JDialog, as well as lightweight

containers like JPanel. Developers can build complex GUIs with Swing components such as

JButton, JToggleButton, JCheckBox, JRadioButton, JLabel, JTextField, JTextArea, JList,

JComboBox, and JMenu.

16.2 THE AWT CLASS HIERARCHY

The Abstract Window Toolkit (AWT) in Java provides a platform-independent

framework for building graphical user interfaces (GUIs). It is part of Java's

standard library and includes classes for windowing, event handling, and

component management. The AWT class hierarchy is the foundation of Java

GUI programming, comprising a variety of classes and interfaces that represent

UI components, containers, and event listeners.

Key Classes in the AWT Hierarchy

1. Component:

o The base class for all AWT components (e.g., buttons, text fields,

labels).

o Defines methods for managing size, position, and rendering.

2. Container:

o A subclass of Component that can hold other components.

o Examples include Panel, Window, and Frame.

3. Panel:

o A generic container for grouping components.

o Often used as a base for custom UI elements.

OOP with Java 16.3 GUI PROGRAMMING WITH JAVA

4. Window:

o A top-level container without borders or a menu bar.

o Extended by Frame and Dialog.

5. Frame:

o A top-level window with a title and borders.

o Commonly used as the main application window.

6. Dialog:

o A pop-up window for user interaction, often modal (blocking other

windows until dismissed).

7. Button, Label, TextField, and Other Components:

o Specific UI elements derived from Component.

8. Graphics and Canvas:

o Graphics is the base for rendering shapes and images.

o Canvas is a blank drawable surface.

9. LayoutManager:

o An interface for organizing components within a container.

o Includes implementations like FlowLayout, BorderLayout, and

GridLayout.

16.3 INTRODUCTION TO SWING

Swing is a Java-based GUI toolkit that provides a rich set of components for

building robust, flexible, and platform-independent graphical user interfaces.

Introduced as part of the Java Foundation Classes (JFC), Swing extends the

Abstract Window Toolkit (AWT) by offering more advanced components,

improved aesthetics, and a lightweight architecture. Unlike AWT, which relies

on the native platform for rendering, Swing components are written entirely in

Java, making them platform-independent and consistent in appearance across

different operating systems.

Centre for Distance Education 16.4 Acharya Nagarjuna University

Key Features of Swing

1. Lightweight Components: Swing components do not depend on the

native operating system, making them more efficient and customizable

than AWT.

2. Rich Component Set: Swing offers a comprehensive range of

components, including JButton, JLabel, JTextField, JTable, JTree, JList,

and many more.

3. Pluggable Look-and-Feel: Developers can change the appearance of

Swing applications dynamically without altering the code, using built-in

or custom look-and-feel themes.

4. Event Handling: Swing inherits AWT’s event delegation model,

providing a robust mechanism to handle user actions like button clicks,

mouse movements, and keyboard events.

5. Customizable Components: Swing allows developers to extend and

modify components to suit application-specific requirements.

6. MVC Architecture: Swing follows the Model-View-Controller (MVC)

design pattern, separating data handling (Model) from the visual

representation (View) and user interaction logic (Controller).

7. Double Buffering: To ensure smoother graphics, Swing uses double

buffering, reducing flickering during animations or rapid updates.

Advantages of Swing

1. Platform Independence: Swing components are rendered by Java,

ensuring consistent behavior and appearance across all platforms.

2. Advanced Graphics: Provides a rich graphics API for creating custom

components and high-quality visuals.

3. Extensibility: Developers can extend existing Swing classes or create

their own components.

OOP with Java 16.3 GUI PROGRAMMING WITH JAVA

4. Built-in Support for Layout Management: Swing includes various

layout managers like BorderLayout, FlowLayout, GridLayout, and

BoxLayout for efficient GUI design.

Limitations of Swing

1. Performance Overhead: Swing’s rich features can lead to higher

memory usage and slower performance compared to lightweight GUI

frameworks.

2. Complexity: Swing applications can become complex to manage,

especially for larger projects.

3. Declining Usage: With modern alternatives like JavaFX, the adoption of

Swing has decreased in recent years.

Applications of Swing

 Desktop applications like text editors, media players, and database front-

ends.

 Educational tools and simulations.

 Prototyping UI designs.

16.4 SWING VS. AWT

Table 16.1 Swing vs. AWT

Feature AWT Swing

Type of

Components

Heavyweight components

(depend on the OS)

Lightweight components

(entirely written in Java)

Rendering Relies on native OS

components for rendering

Java-based rendering (platform-

independent)

Look and Feel Native look and feel

(varies with OS)

Pluggable Look and Feel

(PLAF) – customizable styles

Performance Faster performance due to

native rendering

Slower performance due to

Java-based rendering

Centre for Distance Education 16.6 Acharya Nagarjuna University

Components Limited set of components

(e.g., Button, TextField,

Label)

Richer set of components (e.g.,

JTable, JTree, JComboBox)

Layout

Management

Basic layout managers

(e.g., FlowLayout,

BorderLayout)

Advanced layout managers

with more flexibility (e.g.,

GridLayout, BoxLayout)

Platform

Dependency

Platform-dependent, may

vary across OS

Platform-independent,

consistent across OS

Event Handling AWT-based event

handling

Swing inherits AWT's event

handling model with

improvements

Customization Limited customization and

flexibility

High level of customization and

flexibility

Graphics Limited graphics

capabilities

Enhanced graphics capabilities

(e.g., custom painting)

Integration Can integrate with Swing,

but not as flexible

Fully self-contained, no

dependency on AWT for most

functionality

Examples Button, Label, TextField,

Checkbox, Panel

JButton, JLabel, JTextField,

JComboBox, JTable

16.5 MVC ARCHITECTURE

The Model-View-Controller (MVC) architecture is a design pattern used to

separate the concerns in an application, making it easier to manage and scale. It

is widely used in GUI-based applications and provides a structured approach to

designing the user interface (UI) by dividing it into three interconnected

components:

OOP with Java 16.3 GUI PROGRAMMING WITH JAVA

1. Model:

o The Model represents the data and business logic of the

application. It directly manages the data, logic, and rules of the

application.

o Responsibilities:

 Holds the application data and state.

 Notifies the View of any changes to the data.

 Performs all the necessary operations on the data (such as

calculations, querying the database, etc.).

o Example: A class that holds user data (like a Student class or a

BankAccount class).

2. View:

o The View is responsible for the presentation layer. It displays the

data from the Model to the user and sends user commands to the

Controller.

o Responsibilities:

 Renders the user interface (UI) elements (buttons, labels,

tables, etc.).

 Listens for any changes in the Model and updates itself

accordingly.

 Relays user input to the Controller.

o Example: A window or screen showing data such as a table of user

records or a form for input.

3. Controller:

o The Controller acts as an intermediary between the Model and

View. It listens to user input (through the View) and updates the

Model accordingly.

o Responsibilities:

 Handles user inputs (like mouse clicks, keyboard actions).

Centre for Distance Education 16.8 Acharya Nagarjuna University

 Updates the Model based on user actions.

 Requests updates from the Model and passes the results to the

View.

o Example: A class or method that reacts to button clicks or other

user actions and updates the Model accordingly (e.g., adding a new

user to the database).

How MVC Works Together:

1. User Interaction:

o The user interacts with the View (e.g., clicking a button or entering

data into a text field).

2. Controller Response:

o The View sends the user’s actions to the Controller. The Controller

then processes the input, typically making changes to the Model.

3. Model Update:

o The Model reflects the changes (e.g., updating data or processing

logic) and notifies the View of the update.

4. View Update:

o The View queries the Model and updates the UI with the new data,

reflecting the changes made by the user.

Advantages of MVC Architecture:

1. Separation of Concerns:

o The MVC pattern ensures that the application logic, UI, and user

input handling are separated into distinct components, making the

application easier to maintain and extend.

2. Modularity:

o Each component (Model, View, and Controller) can be modified

independently, which allows for easier updates and customization.

OOP with Java 16.3 GUI PROGRAMMING WITH JAVA

3. Code Reusability:

o The separation allows different Views to be associated with the

same Model, facilitating code reuse.

4. Easier Maintenance:

o Changes in the data model or business logic (Model) don’t require

modifications to the View or Controller, making it easier to

maintain the application.

16.6 HIERARCHY FOR SWING COMPONENTS

Swing components are part of the Java Foundation Classes (JFC), and they

follow a specific hierarchy that allows for easy manipulation and extension of

user interface elements. The Swing component hierarchy is built on top of AWT

components but introduces a more flexible, lightweight framework for creating

GUIs in Java. Below is the hierarchy of Swing components, which illustrates

the inheritance structure and relationships between key components.

1. JComponent:

o JComponent is the base class for all Swing components that have a

graphical user interface. It extends java.awt.Component and

provides many essential methods like setBackground(),

setForeground(), setFont(), setSize(), and setVisible(), among

others.

o Direct subclasses of JComponent represent the majority of Swing

UI components.

2. JButton, JLabel, JTextField, JTextArea:

o These are commonly used Swing components for user interaction:

 JButton: A clickable button.

 JLabel: Displays text or images.

 JTextField: A single-line text input field.

 JTextArea: A multi-line text input area.

Centre for Distance Education 16.10 Acharya Nagarjuna University

3. JToggleButton, JCheckBox, JRadioButton:

o These components represent toggle-style input elements:

 JToggleButton: A button that switches between on and off

states.

 JCheckBox: A box that can be checked or unchecked.

 JRadioButton: A radio button used in groups where only one

button can be selected at a time.

4. JComboBox, JList, JTree:

o These components are used for displaying and selecting data:

 JComboBox: A drop-down list allowing selection from a set

of options.

 JList: Displays a list of items.

 JTree: A hierarchical tree structure for displaying data in a

tree format.

5. Containers:

o Containers are special types of components that hold other

components. Swing provides various types of containers:

 JPanel: A generic container used for organizing components.

 JScrollPane: A container that provides a scrollable view for

other components, such as text areas or lists.

 JFrame: A top-level container used to represent a window.

 JDialog: A pop-up dialog window for secondary

interactions.

 JWindow: A top-level window without borders or

decorations.

 JApplet: A container for applets (although applets are less

common in modern Java applications).

OOP with Java 16.3 GUI PROGRAMMING WITH JAVA

6. Menus and Other Controls:

o Swing also includes several other UI controls for interaction, such

as:

 JMenu: A menu component used in menus.

 JMenuItem: A menu item inside a JMenu.

 JRadioButtonMenuItem: A radio button inside a menu.

 JTextPane: A component that can display styled text,

allowing text formatting like bold, italic, and color.

16.7 CONTAINERS IN JAVA SWING

In Java Swing, containers are special components that can hold other

components (like buttons, text fields, etc.) and are responsible for organizing

and managing the layout of these components. There are two main categories of

containers in Swing: Top-level containers and Lightweight containers. Below is

a detailed explanation of each:

 Top-Level Containers

Top-level containers are the primary containers in Swing that form the

foundation of the application window. They are used to create the outer shell or

window for the application.

 JFrame:

 JFrame is one of the most commonly used top-level containers in Swing.

It represents a standard window in a desktop application.

 Features:

o Can have a title bar, minimize, maximize, and close buttons.

o Typically used for standalone desktop applications.

o Supports menus, toolbars, and other UI components.

 Example Usage:

JFrame frame = new JFrame("My First Frame");

frame.setSize(400, 300);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Centre for Distance Education 16.12 Acharya Nagarjuna University

frame.setVisible(true);

 JApplet (Deprecated):

 JApplet was used for embedding small Java applications (applets) inside

web browsers. However, it has been deprecated and is no longer

commonly used.

 Features:

o Initially used to provide interactive content in web browsers.

o Can be embedded in web pages but requires the browser to support

Java Applets.

 JWindow:

 JWindow is a top-level container that creates an undecorated window.

Unlike JFrame, JWindow has no title bar or any other window

decorations.

 Features:

o Useful for creating splash screens or other pop-up windows

without borders.

o Can be used as a floating, standalone window with no typical

window controls.

 Example Usage:

JWindow window = new JWindow();

window.setSize(200, 100);

window.setVisible(true);

 JDialog:

 JDialog is used for creating pop-up dialog windows, usually for alerts,

confirmations, or user input. It is a modal or non-modal window.

 Features:

o Can be used as a modal dialog (blocks interaction with other windows

until it is closed) or non-modal (allows interaction with other windows).

o Useful for getting user input or displaying messages.

OOP with Java 16.3 GUI PROGRAMMING WITH JAVA

JDialog dialog = new JDialog(frame, "Dialog Example", true); // Modal

dialog

dialog.setSize(200, 100);

dialog.setVisible(true);

 Lightweight Containers

Lightweight containers are containers that do not rely on the operating system's

native windowing system. These containers are drawn purely in Java and allow

for more flexibility and consistency across different platforms.

 JPanel:

 JPanel is one of the most commonly used lightweight containers in

Swing. It is a general-purpose container that can hold and organize

components.

 Features:

o Used to group multiple components together inside a larger

container (like JFrame or JDialog).

o Can be used with layout managers to organize the components it

holds.

o Does not have window decorations or a title bar (unlike JFrame or

JDialog).

JPanel panel = new JPanel();

JButton button = new JButton("Click Me");

panel.add(button);

frame.add(panel);

Table 16.2 Comparison of Top-Level and Lightweight Containers

Feature Top-Level Containers

(JFrame, JApplet,

JWindow, JDialog)

Lightweight Containers

(JPanel)

Purpose Used as the outer container Used to organize and group

Centre for Distance Education 16.14 Acharya Nagarjuna University

or window for the

application.

components within other

containers.

Window

Decorations

Can have title bars, close

buttons, etc. (e.g., JFrame,

JWindow)

No window decorations.

Visibility Can be made visible as

standalone windows.

Needs to be added to a top-

level container to be visible.

Usage Typically used for main

windows, dialog boxes, and

splash screens.

Used for grouping and laying

out components inside other

containers.

Examples JFrame, JDialog, JWindow JPanel

 Top-level containers are used to create primary windows and dialog

boxes, forming the main structure of a GUI application.

 Lightweight containers, such as JPanel, help organize the layout and

grouping of components within those top-level windows. Together, these

containers help build a robust and organized graphical user interface in

Java Swing.

16.8 A SIMPLE SWING APPLICATION

Here's a simple Java Swing application that demonstrates the usage of the listed Swing

components. The application includes a basic graphical user interface (GUI) with interactive

elements such as buttons, toggles, checkboxes, radio buttons, and more.

import javax.swing.*;

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class SwingDemoApp {

 public static void main(String[] args) {

 // Create the main JFrame

OOP with Java 16.3 GUI PROGRAMMING WITH JAVA

 JFrame frame = new JFrame("Swing Components Demo");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(500, 500);

 frame.setLayout(new BorderLayout());

 // Create a JPanel for the components

 JPanel panel = new JPanel();

 panel.setLayout(new GridLayout(0, 2, 10, 10));

 // JLabel

 JLabel label = new JLabel("Label: ");

 panel.add(label);

 // JTextField

 JTextField textField = new JTextField();

 panel.add(textField);

 // JButton

 JButton button = new JButton("Button");

 panel.add(button);

 // JToggleButton

 JToggleButton toggleButton = new JToggleButton("Toggle Button");

 panel.add(toggleButton);

 // JCheckBox

 JCheckBox checkBox = new JCheckBox("Checkbox");

 panel.add(checkBox);

 // JRadioButton

 JRadioButton radioButton = new JRadioButton("Radio Button");

 panel.add(radioButton);

 // JTextArea

Centre for Distance Education 16.16 Acharya Nagarjuna University

 JTextArea textArea = new JTextArea(5, 20);

 JScrollPane textAreaScroll = new JScrollPane(textArea);

 panel.add(new JLabel("TextArea:"));

 panel.add(textAreaScroll);

 // JList

 DefaultListModel<String> listModel = new DefaultListModel<>();

 listModel.addElement("Item 1");

 listModel.addElement("Item 2");

 listModel.addElement("Item 3");

 JList<String> list = new JList<>(listModel);

 JScrollPane listScroll = new JScrollPane(list);

 panel.add(new JLabel("List:"));

 panel.add(listScroll);

 // JComboBox

 JComboBox<String> comboBox = new JComboBox<>(new String[]{"Option 1",

"Option 2", "Option 3"});

 panel.add(new JLabel("ComboBox:"));

 panel.add(comboBox);

 // JMenu

 JMenuBar menuBar = new JMenuBar();

 JMenu menu = new JMenu("Menu");

 JMenuItem menuItem1 = new JMenuItem("Menu Item 1");

 JMenuItem menuItem2 = new JMenuItem("Menu Item 2");

 menu.add(menuItem1);

 menu.add(menuItem2);

 menuBar.add(menu);

 frame.setJMenuBar(menuBar);

 // ActionListener for button

 button.addActionListener(e -> JOptionPane.showMessageDialog(frame, "Button

clicked!"));

OOP with Java 16.3 GUI PROGRAMMING WITH JAVA

 // Add components to the frame

 frame.add(panel, BorderLayout.CENTER);

 // Make the frame visible

 frame.setVisible(true);

 }

}

16.9 SUMMARY

GUI Programming with Java focuses on creating graphical user interfaces using Java's

Abstract Window Toolkit (AWT) and Swing libraries. The AWT class hierarchy provides a

foundation for GUI components but is platform-dependent and less flexible. Swing is an

extension of AWT, offering lightweight, platform-independent, and more versatile

components. Unlike AWT, Swing is built entirely in Java and follows the Model-View-

Controller (MVC) architecture, separating data (model), user interface (view), and logic

(controller).

Swing components are organized in a hierarchy, starting with containers, which can hold

other components. Top-level containers include JFrame (main window), JApplet (applet

window), JWindow (borderless window), and JDialog (popup dialog). Lightweight containers

like JPanel are used for grouping components. A simple Swing application showcases these

components, demonstrating their ease of use and ability to create intuitive, responsive GUIs.

16.10 TECHNICAL TERMS

GUI, AWT, Swing, Model, View, Controller, JPanel, JFrame, JButton.

16.11 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the AWT class hierarchy and its significance in GUI programming.

2. Discuss the advantages of Swing over AWT and how it addresses AWT's limitations.

3. Describe the hierarchy of Swing components and differentiate between top-level

containers and lightweight containers.

4. Write a simple Swing application that demonstrates the use of JButton, JCheckBox,

JRadioButton, JLabel, and JTextField.

Centre for Distance Education 16.18 Acharya Nagarjuna University

5. How does the MVC architecture enhance the functionality of Swing components?

Illustrate with an example.

Short Answer Questions:

1. What is the primary difference between AWT and Swing in Java?

2. Define the MVC architecture in the context of Swing components.

3. Name the top-level containers available in Swing.

4. What is a lightweight container in Swing, and give an example.

5. List any four Swing components and their primary uses.

16 .12 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,

McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,

Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,

2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,

2014

AUTHOR: Mrs. Appikatla Pushpa Latha

 LESSON- 17

JAVA’S GRAPHICS CAPABILITIES
OBJECTIVES:

After going through this lesson, you will be able to

 Understand Graphics Contexts and Graphics Objects

 Explore Color and Font Control

 Familiarize with Layout Management

 Design and Implement Graphical Applications

STRUCTURE OF THE LESSION:

17.1 Introduction

17.2 Java's graphics capabilities

17.3 Graphics contexts

17.4 Graphics objects

17.5 Layout management

17.6 Summary

17.7 Technical Term

17.8 Self-Assessment Question

17.9 Further Readings

17.1 INTRODUCTION

Java's graphics capabilities enable developers to create visually engaging applications by

leveraging the Graphics class and its associated tools. The Graphics context serves as an

environment where drawing operations occur, providing methods to render shapes, text, and

images. The Graphics object acts as an interface to this context, offering tools to customize

drawings. Developers can control visual aspects such as color using the Color class, which

allows for setting background, foreground, and drawing colors, and font customization with

the Font class to display styled text. Java's graphics framework supports rendering basic shapes

like lines, rectangles, and ovals, as well as arcs for creating more complex figures. These tools

Centre for Distance Education 17.2 Acharya Nagarjuna University

collectively empower developers to create detailed and expressive graphical elements in

applications.

In addition to its drawing capabilities, Java simplifies GUI design with layout management,

ensuring components are arranged consistently across different screen sizes and resolutions.

Layout managers, such as BorderLayout, organize components around a central region with

north, south, east, and west areas. GridLayout divides the container into a grid of rows and

columns, while FlowLayout arranges components sequentially, respecting their preferred sizes.

BoxLayout offers flexibility for stacking components horizontally or vertically. By combining

robust graphics tools with efficient layout management, Java provides a comprehensive

platform for building both functional and aesthetically pleasing graphical user interfaces.

17.2 JAVA’S GRAPHICS CAPABILITIES

Java provides a powerful and flexible set of tools for graphics programming through its Java
2D API, which is part of the javax.swing and java.awt packages. These tools enable you to
create, manipulate, and display graphics in Java applications. Graphics programming is
essential for building interactive applications with custom visual elements, including shapes,
colors, text, and images.

Graphics Contexts and Graphics Objects

 Graphics Class: The Graphics class in Java provides the basic methods for drawing
shapes, text, and images. It is the abstract base class for all graphics contexts. The actual
drawing is handled by the Graphics2D class, which extends Graphics and provides
more advanced drawing capabilities, such as gradient fills, complex shapes, and
advanced transformations.

 Graphics Context: A graphics context is an environment that holds the information
related to drawing. It includes the current drawing attributes such as color, font, and
stroke (line width). Each time you invoke drawing methods, they use the current
graphics context to render the output.

17.3 GRAPHICS CONTEXT

The Graphics context serves as an environment where drawing operations occur, providing

methods to render shapes, text, and images. The Graphics object acts as an interface to this

context, offering tools to customize drawings. Developers can control visual aspects such as

color using the Color class, which allows for setting background, foreground, and drawing

colors, and font customization with the Font class to display styled text. Java's graphics

framework supports rendering basic shapes like lines, rectangles, and ovals, as well as arcs for

OOP with Java 17.3 Java’s Graphics Capabilities

creating more complex figures. These tools collectively empower developers to create detailed

and expressive graphical elements in applications.

1. Color Control:

o Java provides the Color class to manage colors in graphics. You can set colors
using predefined colors (Color.RED, Color.BLUE, etc.) or define custom
colors using RGB values.

o Example:

Color myColor = new Color(255, 0, 0); // Red

g.setColor(myColor);

2. Font Control:

o The Font class enables font customization. You can choose font style (bold,
italic) and size.

o Example:

 Font myFont = new Font("Arial", Font.ITALIC, 20);

g.setFont(myFont);

g.drawString("Styled Text", 50, 250);

3. Drawing Shapes:

o Java’s Graphics API allows for drawing basic geometric shapes like lines,
rectangles, circles, and ovals. You can use both outlines and filled shapes.

4. Drawing Text:

o The drawString() method allows you to render text on the screen at specific
coordinates.

o Example:

g.drawString("Hello, World!", 100, 100);

Advanced Graphics Capabilities

1. Graphics2D:

o Graphics2D extends Graphics and provides more control over the rendering
process, including advanced features like transformations, gradients, and complex
shapes.

o Example of setting a gradient color:

Centre for Distance Education 17.4 Acharya Nagarjuna University

GradientPaint gradient = new GradientPaint(0, 0, Color.RED, 100, 100,
Color.BLUE);

g2d.setPaint(gradient);

g2d.fillRect(50, 50, 200, 100);

2. Affine Transformations:

o You can rotate, scale, or shear graphics using AffineTransform. This allows for
complex animations and transformations of shapes.

o Example:

AffineTransform transform = new AffineTransform();

transform.rotate(Math.toRadians(45), 100, 100); // Rotate 45 degrees around (100,
100)

g2d.setTransform(transform);

g2d.fillRect(50, 50, 100, 100);

3. Clipping:

o Java allows clipping the drawing area with a rectangular or custom-shaped region.
Only the parts inside the clipping area are drawn.

o Example:

 g2d.setClip(50, 50, 200, 200); // Clip to a rectangle

17.4 GRAPHICS OBJECT

The Graphics class in Java is the cornerstone of its graphics capabilities, providing a powerful

API for rendering 2D shapes, text, and images. It acts as an interface to a graphics context,

encapsulating details about the drawing surface and rendering attributes such as color, font,

and clipping area. Developers typically obtain a Graphics object by overriding the paint() or

paintComponent() methods in Swing components like JPanel, which automatically pass the

Graphics object as a parameter. With methods like drawLine(), drawRect(), and drawOval(),

the Graphics class facilitates the drawing of shapes, while fillRect() and fillOval() render filled

shapes. For displaying text, methods like drawString() allow developers to incorporate dynamic

or static text into their graphical interfaces.

In addition to basic drawing operations, the Graphics class supports customizations through

methods like setColor() for setting the drawing color and setFont() for defining text styles.

While the Graphics class is versatile, the Graphics2D class, which extends it, offers enhanced

OOP with Java 17.5 Java’s Graphics Capabilities

features for advanced rendering such as transformations, strokes, and anti-aliasing. Together,

these classes form the foundation of Java's 2D graphics system, enabling developers to create

everything from simple drawings to intricate, interactive graphical user interfaces.

import javax.swing.*;

import java.awt.*;

public class GraphicsExample extends JPanel {

 @Override

 protected void paintComponent(Graphics g) {

 super.paintComponent(g); // Ensures proper rendering of the panel

 // Set color for drawing

 g.setColor(Color.BLUE);

 // Draw a line

 g.drawLine(50, 50, 200, 50);

 // Draw a rectangle

 g.drawRect(50, 70, 150, 100);

 // Fill a rectangle

 g.setColor(Color.RED);

 g.fillRect(220, 70, 150, 100);

 // Draw an oval

 g.setColor(Color.GREEN);

 g.drawOval(50, 200, 100, 50);

 // Fill an oval

 g.setColor(Color.ORANGE);

 g.fillOval(200, 200, 100, 50);

 // Draw an arc

 g.setColor(Color.MAGENTA);

 g.drawArc(50, 300, 100, 100, 0, 180);

 // Fill an arc

 g.setColor(Color.CYAN);

 g.fillArc(200, 300, 100, 100, 0, 180);

Centre for Distance Education 17.6 Acharya Nagarjuna University

 // Draw text

 g.setColor(Color.BLACK);

 g.setFont(new Font("Serif", Font.BOLD, 16));

 g.drawString("Graphics Class Example", 50, 450);

 }

 public static void main(String[] args) {

 // Create a JFrame

 JFrame frame = new JFrame("Graphics Example");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(400, 500);

 // Add the custom JPanel

 GraphicsExample panel = new GraphicsExample();

 frame.add(panel);

 // Make the frame visible

 frame.setVisible(true);

 }

}

 Custom Panel (GraphicsExample):

 The paintComponent(Graphics g) method is overridden to perform custom drawing.

 The super.paintComponent(g) call ensures that the panel is properly rendered before

drawing.

 Drawing Shapes:

o Methods like drawLine(), drawRect(), drawOval(), and drawArc() are used for

outlines.

o fillRect(), fillOval(), and fillArc() are used to draw filled shapes.

 Customizing Colors and Fonts:

o The setColor() method sets the drawing color.

o The setFont() method customizes the font for drawing text.

 JFrame Setup:

OOP with Java 17.7 Java’s Graphics Capabilities

o A JFrame is used to host the custom panel where graphics are drawn.

17.5 LAYOUT MANAGEMENT

In Java, Layout Managers are used to define the layout and arrangement of components within
a container, making it easier to design flexible, responsive graphical user interfaces (GUIs).
Layout managers automatically manage the size and position of components, preventing
components from overlapping or being placed improperly. This ensures that the user interface
looks well-structured across different screen sizes and resolutions.

Java provides several built-in layout managers, each serving a specific purpose. These include
BorderLayout, GridLayout, FlowLayout, and BoxLayout. Below is a detailed explanation of
these layout managers and their use cases:

 BorderLayout

 The BorderLayout manager divides the container into five regions: North, South,
East, West, and Center. Components added to the North and South regions are placed
horizontally, while components added to East and West are placed vertically. The
Center region occupies the remaining available space and can expand or contract as
the container resizes.

 Use Case: Useful for arranging components in a single panel with clearly defined areas,
like menus, toolbars, or status bars. Often used in top-level containers (like JFrame).

Example:

import java.awt.*;

import javax.swing.*;

public class BorderLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("BorderLayout Example");

 frame.setSize(400, 300);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setLayout(new BorderLayout());

 frame.add(new JButton("North"), BorderLayout.NORTH);

 frame.add(new JButton("South"), BorderLayout.SOUTH);

 frame.add(new JButton("East"), BorderLayout.EAST);

 frame.add(new JButton("West"), BorderLayout.WEST);

Centre for Distance Education 17.8 Acharya Nagarjuna University

 frame.add(new JButton("Center"), BorderLayout.CENTER);

 frame.setVisible(true);

 }

}

In the above example, the buttons are placed in the North, South, East, West, and Center
regions of the BorderLayout.

 GridLayout

 The GridLayout manager arranges components in a grid with a specified number of
rows and columns. Each cell in the grid has the same size. The components are placed
sequentially in the grid, from left to right and top to bottom.

 Use Case: Ideal for situations where you need to display components in a uniform grid,
such as calculators, form layouts, or grid-based views.

Example:

import java.awt.*;

import javax.swing.*;

public class GridLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("GridLayout Example");

 frame.setSize(300, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setLayout(new GridLayout(2, 2)); // 2 rows, 2 columns

 frame.add(new JButton("Button 1"));

 frame.add(new JButton("Button 2"));

 frame.add(new JButton("Button 3"));

 frame.add(new JButton("Button 4"));

 frame.setVisible(true);

 }

}

OOP with Java 17.9 Java’s Graphics Capabilities

In this example, the GridLayout manager arranges the buttons in a grid with 2 rows and 2
columns. Each button takes up one cell in the grid.

 FlowLayout

 The FlowLayout manager arranges components in a single row, one after the other.
When the row is full, it wraps to the next line. You can control the alignment and the
horizontal/vertical gaps between components. Components are added sequentially,
and the layout adjusts based on the available space.

 Use Case: Useful for form layouts or when you want components to flow in a single
line or wrap around based on available space, such as toolbars or simple horizontal
menus.

Example:

import java.awt.*;

import javax.swing.*;

public class FlowLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("FlowLayout Example");

 frame.setSize(400, 100);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setLayout(new FlowLayout(FlowLayout.CENTER, 20, 20)); // Center alignment,
20px gap

 frame.add(new JButton("Button 1"));

 frame.add(new JButton("Button 2"));

 frame.add(new JButton("Button 3"));

 frame.setVisible(true);

 }

}

The FlowLayout manager arranges the buttons sequentially in a single row. If the window is
resized, the components will wrap to the next line automatically.

 BoxLayout

Centre for Distance Education 17.10 Acharya Nagarjuna University

 The BoxLayout manager arranges components either vertically or horizontally. The
components are aligned and stretched in a single line, either in a row or column. The
BoxLayout is flexible in handling different component sizes and layouts.

 Use Case: Ideal when you need components to be aligned in a single direction (either
horizontally or vertically), such as in forms, toolbars, or simple vertical/horizontal
layouts.

Example:

import java.awt.*;

import javax.swing.*;

public class BoxLayoutExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame("BoxLayout Example");

 frame.setSize(300, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Vertical BoxLayout

 frame.setLayout(new BoxLayout(frame.getContentPane(), BoxLayout.Y_AXIS));

 frame.add(new JButton("Button 1"));

 frame.add(new JButton("Button 2"));

 frame.add(new JButton("Button 3"));

 frame.setVisible(true);

 }

}

In this example, the BoxLayout is set to arrange the buttons vertically (BoxLayout.Y_AXIS).
The buttons are stacked on top of each other.

17.1 Summary of Layout Manager Types

Layout
Manager

Description Use Case

BorderLayout Divides the container into five
regions: North, South, East, West, and
Center.

Ideal for top-level containers like
frames or windows.

OOP with Java 17.11 Java’s Graphics Capabilities

GridLayout Arranges components in a grid with
rows and columns of equal size.

Perfect for grid-based layouts
like calculators or forms.

FlowLayout Components are arranged in a single
row that wraps to the next line when
necessary.

Suitable for toolbars, menus, or
simple sequential layouts.

BoxLayout Arranges components in a single
direction (either vertical or
horizontal).

Great for forms, vertical or
horizontal toolbars, or stacked
components.

Each layout manager in Java serves a unique purpose and is suitable for different types of user
interface designs. By choosing the appropriate layout manager, you can create flexible and
responsive layouts that adjust automatically to the size of the container and its components.
Whether you're building a simple form or a complex GUI application, understanding and using
the right layout manager is key to designing an effective and user-friendly interface.

17.6 SUMMARY

Java's graphics capabilities provide a powerful framework for creating visually appealing

applications, centered around the Graphics class. This class provides a graphics context, an

environment where rendering operations like drawing shapes, text, and images take place. The

Graphics object, typically obtained through the paint() or paintComponent() methods, allows

developers to draw lines, rectangles, ovals, arcs, and more using methods like drawLine(),

drawRect(), and drawOval(). Additionally, Java offers control over visual attributes through

the Color and Font classes, enabling developers to customize text styles and the colors used for

rendering. The introduction of the Graphics2D class extends these capabilities by supporting

advanced features like transformations, anti-aliasing, and compositing.

Java also simplifies GUI design with its layout management system, which ensures consistent

component arrangement across different screen sizes. Layout managers like BorderLayout

organize components into regions (north, south, east, west, and center), while GridLayout

divides the container into equal cells. FlowLayout arranges components sequentially in a row,

and BoxLayout stacks them horizontally or vertically. These layout managers eliminate the

need for manual component placement, allowing developers to focus on the application’s

functionality and aesthetics. Combined with its robust graphics tools, Java provides a

comprehensive platform for developing dynamic and user-friendly graphical interfaces.

17.7 TECHNICAL TERMS

Graphic Object, Graphic Class, Graphic Context, Color Control, Font Control, Layout

Manager, Border, and Grid.

Centre for Distance Education 17.12 Acharya Nagarjuna University

17.8 SELF ASSESSMENT QUESTIONS

Essay questions:

 Explain the concept of Graphics Context and how the Graphics object is used to render

shapes and text in Java applications.

 Describe the process of color control in Java's graphics system and how the Color class

is used to modify drawing attributes.

 Discuss the role of font control in Java's graphics capabilities and how the Font class

allows developers to customize text style and size.

 Provide an example demonstrating the drawing of lines, rectangles, ovals, and arcs in

Java using the Graphics class. Explain how each shape is drawn and filled.

 Discuss the different layout managers in Java, such as BorderLayout, GridLayout,

FlowLayout, and BoxLayout, and explain when to use each layout manager in GUI

design.

 Short Answer Questions:

 What is the purpose of the Graphics class in Java?

 How do you control the color of shapes and text in Java graphics?

 What is the difference between drawRect() and fillRect() methods in Java?

 Name the four layout manager types in Java and briefly describe their function.

 What is the use of Graphics2D class in Java?

17.9 SUGGESTED READINGS

1) Herbert Schildt and Dale Skrien “Java Fundamentals –A comprehensive Introduction”,

McGraw Hill, 1st Edition, 2013.

2) Herbert Schildt, “Java the complete reference”, McGraw Hill, Osborne, 11th Edition, 2018.

3) T. Budd “Understanding Object-Oriented Programming with Java”, Pearson Education,

Updated Edition (New Java 2 Coverage), 1999 REFERENCE BOOKS:

4) P.J. Dietel and H.M. Dietel “Java How to program”, Prentice Hall, 6th Edition, 2005.

5) P. Radha Krishna “Object Oriented programming through Java”, CRC Press,1st Edition,

2007.

6) Malhotra and S. Choudhary “Programming in Java”, Oxford University Press, 2nd Edition,

2014

AUTHOR: Mrs. Appikatla Pushpa Latha

